V. V. Starostenko, E. V. Grigoriev, V. M. Vasilchenko, E. P. Taran, S. A. Zuev, A. N. Kofanov, S. A. Maksyuta
{"title":"纳米级导电结构的导电性","authors":"V. V. Starostenko, E. V. Grigoriev, V. M. Vasilchenko, E. P. Taran, S. A. Zuev, A. N. Kofanov, S. A. Maksyuta","doi":"10.1134/S2635167625600385","DOIUrl":null,"url":null,"abstract":"<p>Issues related to the determination of equivalent (averaged) values of the specific conductivity of films made of nanometer-thick materials under the influence of electromagnetic fields are considered. The significant roughness of the substrates with films does not allow us to compare their conductivity values with their thickness, so the main task is to obtain analytical expressions for the equivalent conductivity from the film thickness for various materials that can be used in modeling complex structures. To approximate the equivalent conductivity from the film thickness, a model of the diffraction of electromagnetic fields on a conductive nanoplane and known results of experimental studies for the coefficients of power reflection, transmission, and absorption (optical coefficients) are used.</p>","PeriodicalId":716,"journal":{"name":"Nanotechnologies in Russia","volume":"20 3","pages":"294 - 299"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conductivity of Nanoscale Conductive Structures\",\"authors\":\"V. V. Starostenko, E. V. Grigoriev, V. M. Vasilchenko, E. P. Taran, S. A. Zuev, A. N. Kofanov, S. A. Maksyuta\",\"doi\":\"10.1134/S2635167625600385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Issues related to the determination of equivalent (averaged) values of the specific conductivity of films made of nanometer-thick materials under the influence of electromagnetic fields are considered. The significant roughness of the substrates with films does not allow us to compare their conductivity values with their thickness, so the main task is to obtain analytical expressions for the equivalent conductivity from the film thickness for various materials that can be used in modeling complex structures. To approximate the equivalent conductivity from the film thickness, a model of the diffraction of electromagnetic fields on a conductive nanoplane and known results of experimental studies for the coefficients of power reflection, transmission, and absorption (optical coefficients) are used.</p>\",\"PeriodicalId\":716,\"journal\":{\"name\":\"Nanotechnologies in Russia\",\"volume\":\"20 3\",\"pages\":\"294 - 299\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnologies in Russia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2635167625600385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnologies in Russia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2635167625600385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Issues related to the determination of equivalent (averaged) values of the specific conductivity of films made of nanometer-thick materials under the influence of electromagnetic fields are considered. The significant roughness of the substrates with films does not allow us to compare their conductivity values with their thickness, so the main task is to obtain analytical expressions for the equivalent conductivity from the film thickness for various materials that can be used in modeling complex structures. To approximate the equivalent conductivity from the film thickness, a model of the diffraction of electromagnetic fields on a conductive nanoplane and known results of experimental studies for the coefficients of power reflection, transmission, and absorption (optical coefficients) are used.
期刊介绍:
Nanobiotechnology Reports publishes interdisciplinary research articles on fundamental aspects of the structure and properties of nanoscale objects and nanomaterials, polymeric and bioorganic molecules, and supramolecular and biohybrid complexes, as well as articles that discuss technologies for their preparation and processing, and practical implementation of products, devices, and nature-like systems based on them. The journal publishes original articles and reviews that meet the highest scientific quality standards in the following areas of science and technology studies: self-organizing structures and nanoassemblies; nanostructures, including nanotubes; functional and structural nanomaterials; polymeric, bioorganic, and hybrid nanomaterials; devices and products based on nanomaterials and nanotechnology; nanobiology and genetics, and omics technologies; nanobiomedicine and nanopharmaceutics; nanoelectronics and neuromorphic computing systems; neurocognitive systems and technologies; nanophotonics; natural science methods in a study of cultural heritage items; metrology, standardization, and monitoring in nanotechnology.