Nayana Rajeev;Cathrene Biju;Titu Mary Ignatius;Roy Paily Palathinkal;Rekha K James
{"title":"RISC-V的可重构AES对抗体系结构与增强的功率侧信道弹性","authors":"Nayana Rajeev;Cathrene Biju;Titu Mary Ignatius;Roy Paily Palathinkal;Rekha K James","doi":"10.1109/LCA.2025.3595003","DOIUrl":null,"url":null,"abstract":"This paper presents RAESC, a reconfigurable Advanced Encryption Standard (AES) countermeasure hardware design that supports AES-128, AES-192, and AES-256 types, enhancing flexibility and resource efficiency in IoT applications. The design incorporates a countermeasure to protect against Power-based Side Channel Attacks (PSCA) by randomizing the AES type based on input plaintext, ensuring improved security. The RAESC is integrated with an RV32IM RISC-V processor, offering streamlined operation and enhanced system security. Performance analysis shows that RAESC’s adaptive encryption strength achieves a balanced trade-off in area, power, and throughput, making it ideal for resource-constrained, security-sensitive IoT applications. Power traces for CPA attacks are generated on Application Specific Integrated Circuit (ASIC) and the design achieves a notable reduction in the Signal to Noise Ratio (SNR) and an increase in the Measurements to Disclose (MTD), demonstrating strong resilience against cryptographic attacks.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"24 2","pages":"273-276"},"PeriodicalIF":1.4000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RAESC: A Reconfigurable AES Countermeasure Architecture for RISC-V With Enhanced Power Side-Channel Resilience\",\"authors\":\"Nayana Rajeev;Cathrene Biju;Titu Mary Ignatius;Roy Paily Palathinkal;Rekha K James\",\"doi\":\"10.1109/LCA.2025.3595003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents RAESC, a reconfigurable Advanced Encryption Standard (AES) countermeasure hardware design that supports AES-128, AES-192, and AES-256 types, enhancing flexibility and resource efficiency in IoT applications. The design incorporates a countermeasure to protect against Power-based Side Channel Attacks (PSCA) by randomizing the AES type based on input plaintext, ensuring improved security. The RAESC is integrated with an RV32IM RISC-V processor, offering streamlined operation and enhanced system security. Performance analysis shows that RAESC’s adaptive encryption strength achieves a balanced trade-off in area, power, and throughput, making it ideal for resource-constrained, security-sensitive IoT applications. Power traces for CPA attacks are generated on Application Specific Integrated Circuit (ASIC) and the design achieves a notable reduction in the Signal to Noise Ratio (SNR) and an increase in the Measurements to Disclose (MTD), demonstrating strong resilience against cryptographic attacks.\",\"PeriodicalId\":51248,\"journal\":{\"name\":\"IEEE Computer Architecture Letters\",\"volume\":\"24 2\",\"pages\":\"273-276\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Computer Architecture Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11106479/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11106479/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
RAESC: A Reconfigurable AES Countermeasure Architecture for RISC-V With Enhanced Power Side-Channel Resilience
This paper presents RAESC, a reconfigurable Advanced Encryption Standard (AES) countermeasure hardware design that supports AES-128, AES-192, and AES-256 types, enhancing flexibility and resource efficiency in IoT applications. The design incorporates a countermeasure to protect against Power-based Side Channel Attacks (PSCA) by randomizing the AES type based on input plaintext, ensuring improved security. The RAESC is integrated with an RV32IM RISC-V processor, offering streamlined operation and enhanced system security. Performance analysis shows that RAESC’s adaptive encryption strength achieves a balanced trade-off in area, power, and throughput, making it ideal for resource-constrained, security-sensitive IoT applications. Power traces for CPA attacks are generated on Application Specific Integrated Circuit (ASIC) and the design achieves a notable reduction in the Signal to Noise Ratio (SNR) and an increase in the Measurements to Disclose (MTD), demonstrating strong resilience against cryptographic attacks.
期刊介绍:
IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.