基于小波卷积神经网络的OFDM-IM系统信号检测

IF 4.8 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yang Zhao;SI-YU Zhang;Yuexia Zhang;Gongpu Wang;Behnam Shahrrava
{"title":"基于小波卷积神经网络的OFDM-IM系统信号检测","authors":"Yang Zhao;SI-YU Zhang;Yuexia Zhang;Gongpu Wang;Behnam Shahrrava","doi":"10.1109/OJVT.2025.3595200","DOIUrl":null,"url":null,"abstract":"Orthogonal Frequency Division Multiplexing with Index Modulation (OFDM-IM) is regarded as a promising candidate for next generation communications due to its remarkable efficiency and flexibility. In the field of wireless communications, deep learning, particularly Convolutional Neural Networks (CNNs), has been extensively utilized for tasks such as channel estimation and signal detection. However, CNNs' limited receptive field growth poses a challenge in capturing long range dependencies. To achieve efficient deep learning based OFDM-IM detection, this paper proposes two novel OFDM-IM signal detection networks that integrate wavelet transforms with CNNs (WTConv). The first proposed network, referred to as Dual Stage Wavelet Convolutions (DS-WTConv), adopts a dual stage architecture. It comprises an Index Feature Extraction Sub-Network (IdxNet) and a Signal Feature Reconstruction Sub-Network (DetNet). The second network, named Single Network Wavelet Convolutions (SN-WTConv), features a more compact single stage design that combines wavelet convolution and CNN layers. Extensive simulation results demonstrate that both the DS-WTConv and SN-WTConv networks exhibit superior bit error rate (BER) performance and lower computational complexity compared to existing conventional and deep learning-based approaches. Compared to the existing deep learning based detection schemes, the proposed WTConv-based networks reduce the BER by up to 35.3%, and the running time by up to 30.1%. Compared to the optimal Maximum likelihood (ML) method, the proposed DS-WTConv and SN-WTConv achieve approximately 19.2 times and 11.3 times faster runtime, respectively.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"6 ","pages":"2210-2223"},"PeriodicalIF":4.8000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11107403","citationCount":"0","resultStr":"{\"title\":\"Novel Wavelet Convolutional Neural Networks for Signal Detection in OFDM-IM Systems\",\"authors\":\"Yang Zhao;SI-YU Zhang;Yuexia Zhang;Gongpu Wang;Behnam Shahrrava\",\"doi\":\"10.1109/OJVT.2025.3595200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Orthogonal Frequency Division Multiplexing with Index Modulation (OFDM-IM) is regarded as a promising candidate for next generation communications due to its remarkable efficiency and flexibility. In the field of wireless communications, deep learning, particularly Convolutional Neural Networks (CNNs), has been extensively utilized for tasks such as channel estimation and signal detection. However, CNNs' limited receptive field growth poses a challenge in capturing long range dependencies. To achieve efficient deep learning based OFDM-IM detection, this paper proposes two novel OFDM-IM signal detection networks that integrate wavelet transforms with CNNs (WTConv). The first proposed network, referred to as Dual Stage Wavelet Convolutions (DS-WTConv), adopts a dual stage architecture. It comprises an Index Feature Extraction Sub-Network (IdxNet) and a Signal Feature Reconstruction Sub-Network (DetNet). The second network, named Single Network Wavelet Convolutions (SN-WTConv), features a more compact single stage design that combines wavelet convolution and CNN layers. Extensive simulation results demonstrate that both the DS-WTConv and SN-WTConv networks exhibit superior bit error rate (BER) performance and lower computational complexity compared to existing conventional and deep learning-based approaches. Compared to the existing deep learning based detection schemes, the proposed WTConv-based networks reduce the BER by up to 35.3%, and the running time by up to 30.1%. Compared to the optimal Maximum likelihood (ML) method, the proposed DS-WTConv and SN-WTConv achieve approximately 19.2 times and 11.3 times faster runtime, respectively.\",\"PeriodicalId\":34270,\"journal\":{\"name\":\"IEEE Open Journal of Vehicular Technology\",\"volume\":\"6 \",\"pages\":\"2210-2223\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11107403\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Vehicular Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11107403/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11107403/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

正交频分复用与索引调制(OFDM-IM)以其卓越的效率和灵活性被认为是下一代通信的理想选择。在无线通信领域,深度学习特别是卷积神经网络(cnn)已被广泛用于信道估计和信号检测等任务。然而,cnn有限的接受场增长对捕获长距离依赖构成了挑战。为了实现基于深度学习的OFDM-IM检测,本文提出了两种将小波变换与cnn相结合的OFDM-IM信号检测网络(WTConv)。第一个提出的网络,称为双阶段小波卷积(DS-WTConv),采用双阶段结构。它包括索引特征提取子网络(IdxNet)和信号特征重构子网络(DetNet)。第二个网络,称为单网络小波卷积(SN-WTConv),具有更紧凑的单级设计,结合了小波卷积和CNN层。大量的仿真结果表明,与现有的传统和基于深度学习的方法相比,DS-WTConv和SN-WTConv网络都具有优越的误码率(BER)性能和更低的计算复杂度。与现有的基于深度学习的检测方案相比,本文提出的基于wtconvn的网络将误码率降低了35.3%,运行时间降低了30.1%。与最优最大似然(ML)方法相比,DS-WTConv和SN-WTConv的运行时间分别快了19.2倍和11.3倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Wavelet Convolutional Neural Networks for Signal Detection in OFDM-IM Systems
Orthogonal Frequency Division Multiplexing with Index Modulation (OFDM-IM) is regarded as a promising candidate for next generation communications due to its remarkable efficiency and flexibility. In the field of wireless communications, deep learning, particularly Convolutional Neural Networks (CNNs), has been extensively utilized for tasks such as channel estimation and signal detection. However, CNNs' limited receptive field growth poses a challenge in capturing long range dependencies. To achieve efficient deep learning based OFDM-IM detection, this paper proposes two novel OFDM-IM signal detection networks that integrate wavelet transforms with CNNs (WTConv). The first proposed network, referred to as Dual Stage Wavelet Convolutions (DS-WTConv), adopts a dual stage architecture. It comprises an Index Feature Extraction Sub-Network (IdxNet) and a Signal Feature Reconstruction Sub-Network (DetNet). The second network, named Single Network Wavelet Convolutions (SN-WTConv), features a more compact single stage design that combines wavelet convolution and CNN layers. Extensive simulation results demonstrate that both the DS-WTConv and SN-WTConv networks exhibit superior bit error rate (BER) performance and lower computational complexity compared to existing conventional and deep learning-based approaches. Compared to the existing deep learning based detection schemes, the proposed WTConv-based networks reduce the BER by up to 35.3%, and the running time by up to 30.1%. Compared to the optimal Maximum likelihood (ML) method, the proposed DS-WTConv and SN-WTConv achieve approximately 19.2 times and 11.3 times faster runtime, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信