{"title":"Lei-Lin-Gevrey空间中分数阶耗散Navier-Stokes方程温和解的行为","authors":"Wilberclay G. Melo","doi":"10.1016/j.jmaa.2025.130002","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents new decay rates for mild solutions of the Navier-Stokes equations, with fractional dissipation of order <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, by considering Lei-Lin-Gevrey spaces. More precisely, our unique solution <em>u</em> satisfies the following result:<span><span><span><math><mrow><munder><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>sup</mi></mrow></mrow><mrow><mi>t</mi><mo>→</mo><mo>∞</mo></mrow></munder><mspace></mspace><msup><mrow><mi>t</mi></mrow><mrow><mfrac><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>3</mn></mrow><mrow><mn>2</mn><mi>s</mi><mo>+</mo><mn>3</mn></mrow></mfrac><mi>min</mi><mo></mo><mo>{</mo><mfrac><mrow><mn>5</mn><mo>−</mo><mn>4</mn><mi>α</mi></mrow><mrow><mn>2</mn><mi>α</mi></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>2</mn><mi>s</mi><mo>+</mo><mn>3</mn></mrow><mrow><mn>2</mn><mi>α</mi></mrow></mfrac><mo>}</mo></mrow></msup><msub><mrow><mo>‖</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>‖</mo></mrow><mrow><msubsup><mrow><mi>X</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msubsup></mrow></msub><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mtext>with </mtext><mi>s</mi><mo>∈</mo><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>]</mo><mo>,</mo><mi>k</mi><mo>∈</mo><mo>(</mo><mo>−</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mi>s</mi><mo>)</mo><mo>.</mo></mrow></math></span></span></span> This is a consequence of the fact that <span><math><msub><mrow><mo>‖</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>‖</mo></mrow><mrow><msubsup><mrow><mover><mrow><mi>H</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mi>a</mi><mo>,</mo><mi>σ</mi></mrow><mrow><mn>0</mn></mrow></msubsup></mrow></msub><mo>→</mo><mn>0</mn></math></span>, as <span><math><mi>t</mi><mo>→</mo><mo>∞</mo></math></span>. Moreover, our main estimate is given by the inequality below:<span><span><span><math><mrow><msub><mrow><mo>‖</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>‖</mo></mrow><mrow><msubsup><mrow><mi>X</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msubsup></mrow></msub><mo>≤</mo><mi>C</mi><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></mrow><mrow><mo>−</mo><mfrac><mrow><mi>k</mi><mo>+</mo><mn>3</mn><mo>−</mo><mi>p</mi></mrow><mrow><mn>2</mn><mi>α</mi></mrow></mfrac></mrow></msup><mo>,</mo><mspace></mspace><mtext>with </mtext><mi>k</mi><mo>≥</mo><mo>−</mo><mn>1</mn><mo>,</mo><mi>p</mi><mo>∈</mo><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mi>k</mi><mo>+</mo><mn>3</mn><mo>)</mo><mo>,</mo></mrow></math></span></span></span> where <span><math><mi>t</mi><mo>></mo><mn>0</mn></math></span> and <em>C</em> is a positive constant.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"554 2","pages":"Article 130002"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Behavior of mild solutions for the Navier-Stokes equations with fractional dissipation in Lei-Lin-Gevrey spaces\",\"authors\":\"Wilberclay G. Melo\",\"doi\":\"10.1016/j.jmaa.2025.130002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work presents new decay rates for mild solutions of the Navier-Stokes equations, with fractional dissipation of order <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, by considering Lei-Lin-Gevrey spaces. More precisely, our unique solution <em>u</em> satisfies the following result:<span><span><span><math><mrow><munder><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>sup</mi></mrow></mrow><mrow><mi>t</mi><mo>→</mo><mo>∞</mo></mrow></munder><mspace></mspace><msup><mrow><mi>t</mi></mrow><mrow><mfrac><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>3</mn></mrow><mrow><mn>2</mn><mi>s</mi><mo>+</mo><mn>3</mn></mrow></mfrac><mi>min</mi><mo></mo><mo>{</mo><mfrac><mrow><mn>5</mn><mo>−</mo><mn>4</mn><mi>α</mi></mrow><mrow><mn>2</mn><mi>α</mi></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>2</mn><mi>s</mi><mo>+</mo><mn>3</mn></mrow><mrow><mn>2</mn><mi>α</mi></mrow></mfrac><mo>}</mo></mrow></msup><msub><mrow><mo>‖</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>‖</mo></mrow><mrow><msubsup><mrow><mi>X</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msubsup></mrow></msub><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mtext>with </mtext><mi>s</mi><mo>∈</mo><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>]</mo><mo>,</mo><mi>k</mi><mo>∈</mo><mo>(</mo><mo>−</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mi>s</mi><mo>)</mo><mo>.</mo></mrow></math></span></span></span> This is a consequence of the fact that <span><math><msub><mrow><mo>‖</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>‖</mo></mrow><mrow><msubsup><mrow><mover><mrow><mi>H</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mi>a</mi><mo>,</mo><mi>σ</mi></mrow><mrow><mn>0</mn></mrow></msubsup></mrow></msub><mo>→</mo><mn>0</mn></math></span>, as <span><math><mi>t</mi><mo>→</mo><mo>∞</mo></math></span>. Moreover, our main estimate is given by the inequality below:<span><span><span><math><mrow><msub><mrow><mo>‖</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>‖</mo></mrow><mrow><msubsup><mrow><mi>X</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msubsup></mrow></msub><mo>≤</mo><mi>C</mi><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></mrow><mrow><mo>−</mo><mfrac><mrow><mi>k</mi><mo>+</mo><mn>3</mn><mo>−</mo><mi>p</mi></mrow><mrow><mn>2</mn><mi>α</mi></mrow></mfrac></mrow></msup><mo>,</mo><mspace></mspace><mtext>with </mtext><mi>k</mi><mo>≥</mo><mo>−</mo><mn>1</mn><mo>,</mo><mi>p</mi><mo>∈</mo><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mi>k</mi><mo>+</mo><mn>3</mn><mo>)</mo><mo>,</mo></mrow></math></span></span></span> where <span><math><mi>t</mi><mo>></mo><mn>0</mn></math></span> and <em>C</em> is a positive constant.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"554 2\",\"pages\":\"Article 130002\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25007838\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25007838","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Behavior of mild solutions for the Navier-Stokes equations with fractional dissipation in Lei-Lin-Gevrey spaces
This work presents new decay rates for mild solutions of the Navier-Stokes equations, with fractional dissipation of order , by considering Lei-Lin-Gevrey spaces. More precisely, our unique solution u satisfies the following result: This is a consequence of the fact that , as . Moreover, our main estimate is given by the inequality below: where and C is a positive constant.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.