Lei-Lin-Gevrey空间中分数阶耗散Navier-Stokes方程温和解的行为

IF 1.2 3区 数学 Q1 MATHEMATICS
Wilberclay G. Melo
{"title":"Lei-Lin-Gevrey空间中分数阶耗散Navier-Stokes方程温和解的行为","authors":"Wilberclay G. Melo","doi":"10.1016/j.jmaa.2025.130002","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents new decay rates for mild solutions of the Navier-Stokes equations, with fractional dissipation of order <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, by considering Lei-Lin-Gevrey spaces. More precisely, our unique solution <em>u</em> satisfies the following result:<span><span><span><math><mrow><munder><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>sup</mi></mrow></mrow><mrow><mi>t</mi><mo>→</mo><mo>∞</mo></mrow></munder><mspace></mspace><msup><mrow><mi>t</mi></mrow><mrow><mfrac><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>3</mn></mrow><mrow><mn>2</mn><mi>s</mi><mo>+</mo><mn>3</mn></mrow></mfrac><mi>min</mi><mo>⁡</mo><mo>{</mo><mfrac><mrow><mn>5</mn><mo>−</mo><mn>4</mn><mi>α</mi></mrow><mrow><mn>2</mn><mi>α</mi></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>2</mn><mi>s</mi><mo>+</mo><mn>3</mn></mrow><mrow><mn>2</mn><mi>α</mi></mrow></mfrac><mo>}</mo></mrow></msup><msub><mrow><mo>‖</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>‖</mo></mrow><mrow><msubsup><mrow><mi>X</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msubsup></mrow></msub><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mtext>with </mtext><mi>s</mi><mo>∈</mo><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>]</mo><mo>,</mo><mi>k</mi><mo>∈</mo><mo>(</mo><mo>−</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mi>s</mi><mo>)</mo><mo>.</mo></mrow></math></span></span></span> This is a consequence of the fact that <span><math><msub><mrow><mo>‖</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>‖</mo></mrow><mrow><msubsup><mrow><mover><mrow><mi>H</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mi>a</mi><mo>,</mo><mi>σ</mi></mrow><mrow><mn>0</mn></mrow></msubsup></mrow></msub><mo>→</mo><mn>0</mn></math></span>, as <span><math><mi>t</mi><mo>→</mo><mo>∞</mo></math></span>. Moreover, our main estimate is given by the inequality below:<span><span><span><math><mrow><msub><mrow><mo>‖</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>‖</mo></mrow><mrow><msubsup><mrow><mi>X</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msubsup></mrow></msub><mo>≤</mo><mi>C</mi><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></mrow><mrow><mo>−</mo><mfrac><mrow><mi>k</mi><mo>+</mo><mn>3</mn><mo>−</mo><mi>p</mi></mrow><mrow><mn>2</mn><mi>α</mi></mrow></mfrac></mrow></msup><mo>,</mo><mspace></mspace><mtext>with </mtext><mi>k</mi><mo>≥</mo><mo>−</mo><mn>1</mn><mo>,</mo><mi>p</mi><mo>∈</mo><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mi>k</mi><mo>+</mo><mn>3</mn><mo>)</mo><mo>,</mo></mrow></math></span></span></span> where <span><math><mi>t</mi><mo>&gt;</mo><mn>0</mn></math></span> and <em>C</em> is a positive constant.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"554 2","pages":"Article 130002"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Behavior of mild solutions for the Navier-Stokes equations with fractional dissipation in Lei-Lin-Gevrey spaces\",\"authors\":\"Wilberclay G. Melo\",\"doi\":\"10.1016/j.jmaa.2025.130002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work presents new decay rates for mild solutions of the Navier-Stokes equations, with fractional dissipation of order <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, by considering Lei-Lin-Gevrey spaces. More precisely, our unique solution <em>u</em> satisfies the following result:<span><span><span><math><mrow><munder><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>sup</mi></mrow></mrow><mrow><mi>t</mi><mo>→</mo><mo>∞</mo></mrow></munder><mspace></mspace><msup><mrow><mi>t</mi></mrow><mrow><mfrac><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>3</mn></mrow><mrow><mn>2</mn><mi>s</mi><mo>+</mo><mn>3</mn></mrow></mfrac><mi>min</mi><mo>⁡</mo><mo>{</mo><mfrac><mrow><mn>5</mn><mo>−</mo><mn>4</mn><mi>α</mi></mrow><mrow><mn>2</mn><mi>α</mi></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>2</mn><mi>s</mi><mo>+</mo><mn>3</mn></mrow><mrow><mn>2</mn><mi>α</mi></mrow></mfrac><mo>}</mo></mrow></msup><msub><mrow><mo>‖</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>‖</mo></mrow><mrow><msubsup><mrow><mi>X</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msubsup></mrow></msub><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mtext>with </mtext><mi>s</mi><mo>∈</mo><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>]</mo><mo>,</mo><mi>k</mi><mo>∈</mo><mo>(</mo><mo>−</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mi>s</mi><mo>)</mo><mo>.</mo></mrow></math></span></span></span> This is a consequence of the fact that <span><math><msub><mrow><mo>‖</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>‖</mo></mrow><mrow><msubsup><mrow><mover><mrow><mi>H</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mi>a</mi><mo>,</mo><mi>σ</mi></mrow><mrow><mn>0</mn></mrow></msubsup></mrow></msub><mo>→</mo><mn>0</mn></math></span>, as <span><math><mi>t</mi><mo>→</mo><mo>∞</mo></math></span>. Moreover, our main estimate is given by the inequality below:<span><span><span><math><mrow><msub><mrow><mo>‖</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>‖</mo></mrow><mrow><msubsup><mrow><mi>X</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msubsup></mrow></msub><mo>≤</mo><mi>C</mi><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></mrow><mrow><mo>−</mo><mfrac><mrow><mi>k</mi><mo>+</mo><mn>3</mn><mo>−</mo><mi>p</mi></mrow><mrow><mn>2</mn><mi>α</mi></mrow></mfrac></mrow></msup><mo>,</mo><mspace></mspace><mtext>with </mtext><mi>k</mi><mo>≥</mo><mo>−</mo><mn>1</mn><mo>,</mo><mi>p</mi><mo>∈</mo><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mi>k</mi><mo>+</mo><mn>3</mn><mo>)</mo><mo>,</mo></mrow></math></span></span></span> where <span><math><mi>t</mi><mo>&gt;</mo><mn>0</mn></math></span> and <em>C</em> is a positive constant.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"554 2\",\"pages\":\"Article 130002\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25007838\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25007838","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文通过考虑Lei-Lin-Gevrey空间,给出了阶为α∈[12,1]的分数阶耗散的Navier-Stokes方程温和解的新的衰减率。更精确地说,我们的唯一解u满足如下结果:limsupt→∞t2k+32s+3min({5−4α2α,2s+32α})‖u(t)‖Xa,σk=0,其中s∈[−1,0],k∈(−32,s)。这是由于‖u(t)‖H˙a,σ0→0,当t→∞。此外,我们的主要估计由以下不等式给出:‖u(t)‖Xa,σk≤C(1+t)−k+3−p2α,其中k≥- 1,p∈[- 1,k+3],其中t>;0, C为正常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Behavior of mild solutions for the Navier-Stokes equations with fractional dissipation in Lei-Lin-Gevrey spaces
This work presents new decay rates for mild solutions of the Navier-Stokes equations, with fractional dissipation of order α[12,1], by considering Lei-Lin-Gevrey spaces. More precisely, our unique solution u satisfies the following result:limsuptt2k+32s+3min{54α2α,2s+32α}u(t)Xa,σk=0,with s[1,0],k(32,s). This is a consequence of the fact that u(t)H˙a,σ00, as t. Moreover, our main estimate is given by the inequality below:u(t)Xa,σkC(1+t)k+3p2α,with k1,p[1,k+3), where t>0 and C is a positive constant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信