方形外壳中离散加热对银、铜和MWCNT纳米流体热性能的影响:CFD分析

IF 3.9 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sudhakar Uppada , G. Jamuna Rani , Yarrapragada Kss Rao , Ravikiran Balaga
{"title":"方形外壳中离散加热对银、铜和MWCNT纳米流体热性能的影响:CFD分析","authors":"Sudhakar Uppada ,&nbsp;G. Jamuna Rani ,&nbsp;Yarrapragada Kss Rao ,&nbsp;Ravikiran Balaga","doi":"10.1016/j.vacuum.2025.114690","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the complex interactions between Rayleigh number (10<sup>3</sup>-10<sup>6</sup>), nanoparticle concentration (0.1 vol%-0,5 vol%), and heating location in nanofluid-filled enclosures to enhance heat transfer efficiency and minimize irreversibilities. Focusing on water-based nanofluids containing silver (Ag), copper (Cu), and multi-walled carbon nanotubes (MWCNTs), a validated numerical model analyzes the impact of these variables on heat transfer characteristics and entropy generation. Results reveal a shift from conduction to convection-dominated heat transfer with increasing Rayleigh numbers, particularly at higher nanoparticle concentrations. Optimal conditions for buoyancy-driven circulation and Nusselt number are identified with discrete heating at <em>L</em><sub><em>d</em></sub> = 0.4 and 0.5 vol% Ag nanofluid, leading to improved heat transfer performance and reduced energy losses. The findings contribute to the design of advanced passive cooling systems, enhancing the efficiency and longevity of high-performance thermal applications.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"241 ","pages":"Article 114690"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of discrete heating on thermal performance of Ag, Cu, and MWCNT nanofluids in square enclosure: A CFD analysis\",\"authors\":\"Sudhakar Uppada ,&nbsp;G. Jamuna Rani ,&nbsp;Yarrapragada Kss Rao ,&nbsp;Ravikiran Balaga\",\"doi\":\"10.1016/j.vacuum.2025.114690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the complex interactions between Rayleigh number (10<sup>3</sup>-10<sup>6</sup>), nanoparticle concentration (0.1 vol%-0,5 vol%), and heating location in nanofluid-filled enclosures to enhance heat transfer efficiency and minimize irreversibilities. Focusing on water-based nanofluids containing silver (Ag), copper (Cu), and multi-walled carbon nanotubes (MWCNTs), a validated numerical model analyzes the impact of these variables on heat transfer characteristics and entropy generation. Results reveal a shift from conduction to convection-dominated heat transfer with increasing Rayleigh numbers, particularly at higher nanoparticle concentrations. Optimal conditions for buoyancy-driven circulation and Nusselt number are identified with discrete heating at <em>L</em><sub><em>d</em></sub> = 0.4 and 0.5 vol% Ag nanofluid, leading to improved heat transfer performance and reduced energy losses. The findings contribute to the design of advanced passive cooling systems, enhancing the efficiency and longevity of high-performance thermal applications.</div></div>\",\"PeriodicalId\":23559,\"journal\":{\"name\":\"Vacuum\",\"volume\":\"241 \",\"pages\":\"Article 114690\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vacuum\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0042207X25006803\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X25006803","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了在纳米流体填充的外壳中,瑞利数(103-106)、纳米颗粒浓度(0.1 vol%-0,5 vol%)和加热位置之间的复杂相互作用,以提高传热效率并最大限度地减少不可逆。以含银(Ag)、铜(Cu)和多壁碳纳米管(MWCNTs)的水基纳米流体为研究对象,建立了一个经过验证的数值模型,分析了这些变量对传热特性和熵生成的影响。结果表明,随着瑞利数的增加,特别是在较高的纳米颗粒浓度下,传热从传导转变为对流为主。在Ld = 0.4和0.5 vol% Ag纳米流体条件下进行离散加热,确定了浮力驱动循环和努塞尔数的最佳条件,从而提高了传热性能,减少了能量损失。研究结果有助于设计先进的被动冷却系统,提高高性能热应用的效率和寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of discrete heating on thermal performance of Ag, Cu, and MWCNT nanofluids in square enclosure: A CFD analysis
This study investigates the complex interactions between Rayleigh number (103-106), nanoparticle concentration (0.1 vol%-0,5 vol%), and heating location in nanofluid-filled enclosures to enhance heat transfer efficiency and minimize irreversibilities. Focusing on water-based nanofluids containing silver (Ag), copper (Cu), and multi-walled carbon nanotubes (MWCNTs), a validated numerical model analyzes the impact of these variables on heat transfer characteristics and entropy generation. Results reveal a shift from conduction to convection-dominated heat transfer with increasing Rayleigh numbers, particularly at higher nanoparticle concentrations. Optimal conditions for buoyancy-driven circulation and Nusselt number are identified with discrete heating at Ld = 0.4 and 0.5 vol% Ag nanofluid, leading to improved heat transfer performance and reduced energy losses. The findings contribute to the design of advanced passive cooling systems, enhancing the efficiency and longevity of high-performance thermal applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Vacuum
Vacuum 工程技术-材料科学:综合
CiteScore
6.80
自引率
17.50%
发文量
0
审稿时长
34 days
期刊介绍: Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences. A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below. The scope of the journal includes: 1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes). 2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis. 3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification. 4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信