与弦网状体相关的实环流形

IF 1.2 2区 数学 Q2 MATHEMATICS
Suyoung Choi, Younghan Yoon
{"title":"与弦网状体相关的实环流形","authors":"Suyoung Choi,&nbsp;Younghan Yoon","doi":"10.1016/j.jcta.2025.106102","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the rational Betti numbers of real toric manifolds associated with chordal nestohedra. We consider the poset topology of a specific poset induced from a chordal building set, and show its EL-shellability. Based on this, we present an explicit description using alternating <span><math><mi>B</mi></math></span>-permutations for a chordal building set <span><math><mi>B</mi></math></span>, transforming the computing Betti numbers into a counting problem. This approach allows us to compute the <em>a</em>-number of a finite simple graph through permutation counting when the graph is chordal. In addition, we provide detailed computations for specific cases such as real Hochschild varieties corresponding to Hochschild polytopes.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"217 ","pages":"Article 106102"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real toric manifolds associated with chordal nestohedra\",\"authors\":\"Suyoung Choi,&nbsp;Younghan Yoon\",\"doi\":\"10.1016/j.jcta.2025.106102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the rational Betti numbers of real toric manifolds associated with chordal nestohedra. We consider the poset topology of a specific poset induced from a chordal building set, and show its EL-shellability. Based on this, we present an explicit description using alternating <span><math><mi>B</mi></math></span>-permutations for a chordal building set <span><math><mi>B</mi></math></span>, transforming the computing Betti numbers into a counting problem. This approach allows us to compute the <em>a</em>-number of a finite simple graph through permutation counting when the graph is chordal. In addition, we provide detailed computations for specific cases such as real Hochschild varieties corresponding to Hochschild polytopes.</div></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"217 \",\"pages\":\"Article 106102\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316525000974\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525000974","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了与弦网状体相关的实环流形的有理数Betti数。我们考虑了由弦建筑集导出的特定偏序集的偏序集拓扑,并证明了它的EL-shellability。在此基础上,对弦建筑集B给出了交替B-置换的显式描述,将计算Betti数转化为计数问题。这种方法允许我们通过排列计数来计算有限简单图的a数,当图是弦态时。此外,我们还对Hochschild多面体对应的真实Hochschild变种等具体情况进行了详细的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real toric manifolds associated with chordal nestohedra
This paper investigates the rational Betti numbers of real toric manifolds associated with chordal nestohedra. We consider the poset topology of a specific poset induced from a chordal building set, and show its EL-shellability. Based on this, we present an explicit description using alternating B-permutations for a chordal building set B, transforming the computing Betti numbers into a counting problem. This approach allows us to compute the a-number of a finite simple graph through permutation counting when the graph is chordal. In addition, we provide detailed computations for specific cases such as real Hochschild varieties corresponding to Hochschild polytopes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信