平方米规模的镍基阳极:易于室温施工,实现高效的工业水电解

IF 8.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jihong Li , Zhenying Feng , Xiaokun Sheng , Keren Chen , Jingming Ran , Luyao Li , Lei Shi , Tongzhou Wang , Yida Deng
{"title":"平方米规模的镍基阳极:易于室温施工,实现高效的工业水电解","authors":"Jihong Li ,&nbsp;Zhenying Feng ,&nbsp;Xiaokun Sheng ,&nbsp;Keren Chen ,&nbsp;Jingming Ran ,&nbsp;Luyao Li ,&nbsp;Lei Shi ,&nbsp;Tongzhou Wang ,&nbsp;Yida Deng","doi":"10.1016/j.cclet.2025.111652","DOIUrl":null,"url":null,"abstract":"<div><div>The development of cost-effective and energy-efficient anode materials is essential for the advancement of industrial water electrolysis. Herein, we report a rapid, ambient-temperature method to prepare large-area nickel mesh electrodes (SFN/NM) <em>via</em> surface functionalization completed within 3 min, without relying on thermal treatments or noble metals. The as-prepared electrodes achieve a high current density of 100 mA/cm<sup>2</sup> at an overpotential of just 300 mV in 6 mol/L KOH, and exhibit remarkable stability over 1600 h of continuous operation. With comparable activity to commercial Raney nickel yet significantly lower processing and material costs (reduced by 50 %–70 %), this approach provides a practical solution for low-energy water splitting. Beyond its industrial relevance, the strategy offers a scalable model for engineering high-performance OER electrodes, inspiring future directions in electrocatalyst design.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 11","pages":"Article 111652"},"PeriodicalIF":8.9000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Square-meter-scale nickel-based anode: Facile room-temperature construction for efficient industrial water electrolysis\",\"authors\":\"Jihong Li ,&nbsp;Zhenying Feng ,&nbsp;Xiaokun Sheng ,&nbsp;Keren Chen ,&nbsp;Jingming Ran ,&nbsp;Luyao Li ,&nbsp;Lei Shi ,&nbsp;Tongzhou Wang ,&nbsp;Yida Deng\",\"doi\":\"10.1016/j.cclet.2025.111652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of cost-effective and energy-efficient anode materials is essential for the advancement of industrial water electrolysis. Herein, we report a rapid, ambient-temperature method to prepare large-area nickel mesh electrodes (SFN/NM) <em>via</em> surface functionalization completed within 3 min, without relying on thermal treatments or noble metals. The as-prepared electrodes achieve a high current density of 100 mA/cm<sup>2</sup> at an overpotential of just 300 mV in 6 mol/L KOH, and exhibit remarkable stability over 1600 h of continuous operation. With comparable activity to commercial Raney nickel yet significantly lower processing and material costs (reduced by 50 %–70 %), this approach provides a practical solution for low-energy water splitting. Beyond its industrial relevance, the strategy offers a scalable model for engineering high-performance OER electrodes, inspiring future directions in electrocatalyst design.</div></div>\",\"PeriodicalId\":10088,\"journal\":{\"name\":\"Chinese Chemical Letters\",\"volume\":\"36 11\",\"pages\":\"Article 111652\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Chemical Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001841725008320\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Chemical Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001841725008320","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发经济高效的阳极材料是推进工业水电解的必要条件。在此,我们报告了一种快速的室温方法,通过在3 min内完成的表面功能化来制备大面积镍网电极(SFN/NM),而不依赖于热处理或贵金属。所制备的电极在6 mol/L KOH下,过电位仅为300 mV时,电流密度高达100 mA/cm2,并且在1600 h的连续工作时间内表现出显著的稳定性。该方法具有与商业Raney镍相当的活性,但显著降低了加工和材料成本(降低了50% % - 70% %),为低能水分解提供了实用的解决方案。除了其工业相关性之外,该策略还为工程高性能OER电极提供了可扩展的模型,启发了电催化剂设计的未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Square-meter-scale nickel-based anode: Facile room-temperature construction for efficient industrial water electrolysis

Square-meter-scale nickel-based anode: Facile room-temperature construction for efficient industrial water electrolysis
The development of cost-effective and energy-efficient anode materials is essential for the advancement of industrial water electrolysis. Herein, we report a rapid, ambient-temperature method to prepare large-area nickel mesh electrodes (SFN/NM) via surface functionalization completed within 3 min, without relying on thermal treatments or noble metals. The as-prepared electrodes achieve a high current density of 100 mA/cm2 at an overpotential of just 300 mV in 6 mol/L KOH, and exhibit remarkable stability over 1600 h of continuous operation. With comparable activity to commercial Raney nickel yet significantly lower processing and material costs (reduced by 50 %–70 %), this approach provides a practical solution for low-energy water splitting. Beyond its industrial relevance, the strategy offers a scalable model for engineering high-performance OER electrodes, inspiring future directions in electrocatalyst design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Chemical Letters
Chinese Chemical Letters 化学-化学综合
CiteScore
14.10
自引率
15.40%
发文量
8969
审稿时长
1.6 months
期刊介绍: Chinese Chemical Letters (CCL) (ISSN 1001-8417) was founded in July 1990. The journal publishes preliminary accounts in the whole field of chemistry, including inorganic chemistry, organic chemistry, analytical chemistry, physical chemistry, polymer chemistry, applied chemistry, etc.Chinese Chemical Letters does not accept articles previously published or scheduled to be published. To verify originality, your article may be checked by the originality detection service CrossCheck.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信