Yongkai Zhang , Zhenhao Luo , Pushpendra Kumar , Songtong Zhang , Yuhong Jin , Qianqian Zhang , Xiayu Zhu , Wenjie Meng , Hai Ming , Jingyi Qiu
{"title":"锂基生命形式:对锂离子电池瞬时和滞后性能的影响分析","authors":"Yongkai Zhang , Zhenhao Luo , Pushpendra Kumar , Songtong Zhang , Yuhong Jin , Qianqian Zhang , Xiayu Zhu , Wenjie Meng , Hai Ming , Jingyi Qiu","doi":"10.1016/j.mser.2025.101096","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium-ion batteries (LIBs) mainly function via the processes of lithium-ion diffusion and electron transport, which can be metaphorically compared to biological functions. Just like living lifeform organisms that need particular conditions to keep homeostasis, any departure from optimal operating parameters in LIBs may result in performance degradation, safety and reliability compromise, and ultimately may lead to battery failure or even to thermal runaway. To ensure reliable operation, a thorough understanding and influence analysis of the instantaneous and hysteresis performance for LIBs under the extreme environments or operating conditions, such as mechanical extrusion, vibration, high- and low- temperatures, supergravity and microgravity, and low atmospheric pressure, is essential, which enables accurate assessment of their ability to meet energy and power demands over their whole service life. Additionally, a series of critical challenges associated with overcharge, overdischarge, and high-current (pulse) cycling can also exert an adverse impact on the LIBs, especially when these factors act either individually or in combination. Herein, this review firstly presents the concept of lithium-based lifeforms, in conjunction with the groundbreaking proposal of instantaneous and hysteresis performances to comprehensively evaluate the whole life of LIBs, which is expected to guide the design of advanced LIBs with high performance and substantially enhance the accuracy of predictive and early-warning models for batteries and modules.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"167 ","pages":"Article 101096"},"PeriodicalIF":31.6000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lithium-based lifeforms: Influence analysis of instantaneous and hysteresis performances in lithium-ion batteries\",\"authors\":\"Yongkai Zhang , Zhenhao Luo , Pushpendra Kumar , Songtong Zhang , Yuhong Jin , Qianqian Zhang , Xiayu Zhu , Wenjie Meng , Hai Ming , Jingyi Qiu\",\"doi\":\"10.1016/j.mser.2025.101096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lithium-ion batteries (LIBs) mainly function via the processes of lithium-ion diffusion and electron transport, which can be metaphorically compared to biological functions. Just like living lifeform organisms that need particular conditions to keep homeostasis, any departure from optimal operating parameters in LIBs may result in performance degradation, safety and reliability compromise, and ultimately may lead to battery failure or even to thermal runaway. To ensure reliable operation, a thorough understanding and influence analysis of the instantaneous and hysteresis performance for LIBs under the extreme environments or operating conditions, such as mechanical extrusion, vibration, high- and low- temperatures, supergravity and microgravity, and low atmospheric pressure, is essential, which enables accurate assessment of their ability to meet energy and power demands over their whole service life. Additionally, a series of critical challenges associated with overcharge, overdischarge, and high-current (pulse) cycling can also exert an adverse impact on the LIBs, especially when these factors act either individually or in combination. Herein, this review firstly presents the concept of lithium-based lifeforms, in conjunction with the groundbreaking proposal of instantaneous and hysteresis performances to comprehensively evaluate the whole life of LIBs, which is expected to guide the design of advanced LIBs with high performance and substantially enhance the accuracy of predictive and early-warning models for batteries and modules.</div></div>\",\"PeriodicalId\":386,\"journal\":{\"name\":\"Materials Science and Engineering: R: Reports\",\"volume\":\"167 \",\"pages\":\"Article 101096\"},\"PeriodicalIF\":31.6000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: R: Reports\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927796X25001743\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X25001743","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Lithium-based lifeforms: Influence analysis of instantaneous and hysteresis performances in lithium-ion batteries
Lithium-ion batteries (LIBs) mainly function via the processes of lithium-ion diffusion and electron transport, which can be metaphorically compared to biological functions. Just like living lifeform organisms that need particular conditions to keep homeostasis, any departure from optimal operating parameters in LIBs may result in performance degradation, safety and reliability compromise, and ultimately may lead to battery failure or even to thermal runaway. To ensure reliable operation, a thorough understanding and influence analysis of the instantaneous and hysteresis performance for LIBs under the extreme environments or operating conditions, such as mechanical extrusion, vibration, high- and low- temperatures, supergravity and microgravity, and low atmospheric pressure, is essential, which enables accurate assessment of their ability to meet energy and power demands over their whole service life. Additionally, a series of critical challenges associated with overcharge, overdischarge, and high-current (pulse) cycling can also exert an adverse impact on the LIBs, especially when these factors act either individually or in combination. Herein, this review firstly presents the concept of lithium-based lifeforms, in conjunction with the groundbreaking proposal of instantaneous and hysteresis performances to comprehensively evaluate the whole life of LIBs, which is expected to guide the design of advanced LIBs with high performance and substantially enhance the accuracy of predictive and early-warning models for batteries and modules.
期刊介绍:
Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews.
The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.