锂基生命形式:对锂离子电池瞬时和滞后性能的影响分析

IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yongkai Zhang , Zhenhao Luo , Pushpendra Kumar , Songtong Zhang , Yuhong Jin , Qianqian Zhang , Xiayu Zhu , Wenjie Meng , Hai Ming , Jingyi Qiu
{"title":"锂基生命形式:对锂离子电池瞬时和滞后性能的影响分析","authors":"Yongkai Zhang ,&nbsp;Zhenhao Luo ,&nbsp;Pushpendra Kumar ,&nbsp;Songtong Zhang ,&nbsp;Yuhong Jin ,&nbsp;Qianqian Zhang ,&nbsp;Xiayu Zhu ,&nbsp;Wenjie Meng ,&nbsp;Hai Ming ,&nbsp;Jingyi Qiu","doi":"10.1016/j.mser.2025.101096","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium-ion batteries (LIBs) mainly function via the processes of lithium-ion diffusion and electron transport, which can be metaphorically compared to biological functions. Just like living lifeform organisms that need particular conditions to keep homeostasis, any departure from optimal operating parameters in LIBs may result in performance degradation, safety and reliability compromise, and ultimately may lead to battery failure or even to thermal runaway. To ensure reliable operation, a thorough understanding and influence analysis of the instantaneous and hysteresis performance for LIBs under the extreme environments or operating conditions, such as mechanical extrusion, vibration, high- and low- temperatures, supergravity and microgravity, and low atmospheric pressure, is essential, which enables accurate assessment of their ability to meet energy and power demands over their whole service life. Additionally, a series of critical challenges associated with overcharge, overdischarge, and high-current (pulse) cycling can also exert an adverse impact on the LIBs, especially when these factors act either individually or in combination. Herein, this review firstly presents the concept of lithium-based lifeforms, in conjunction with the groundbreaking proposal of instantaneous and hysteresis performances to comprehensively evaluate the whole life of LIBs, which is expected to guide the design of advanced LIBs with high performance and substantially enhance the accuracy of predictive and early-warning models for batteries and modules.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"167 ","pages":"Article 101096"},"PeriodicalIF":31.6000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lithium-based lifeforms: Influence analysis of instantaneous and hysteresis performances in lithium-ion batteries\",\"authors\":\"Yongkai Zhang ,&nbsp;Zhenhao Luo ,&nbsp;Pushpendra Kumar ,&nbsp;Songtong Zhang ,&nbsp;Yuhong Jin ,&nbsp;Qianqian Zhang ,&nbsp;Xiayu Zhu ,&nbsp;Wenjie Meng ,&nbsp;Hai Ming ,&nbsp;Jingyi Qiu\",\"doi\":\"10.1016/j.mser.2025.101096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lithium-ion batteries (LIBs) mainly function via the processes of lithium-ion diffusion and electron transport, which can be metaphorically compared to biological functions. Just like living lifeform organisms that need particular conditions to keep homeostasis, any departure from optimal operating parameters in LIBs may result in performance degradation, safety and reliability compromise, and ultimately may lead to battery failure or even to thermal runaway. To ensure reliable operation, a thorough understanding and influence analysis of the instantaneous and hysteresis performance for LIBs under the extreme environments or operating conditions, such as mechanical extrusion, vibration, high- and low- temperatures, supergravity and microgravity, and low atmospheric pressure, is essential, which enables accurate assessment of their ability to meet energy and power demands over their whole service life. Additionally, a series of critical challenges associated with overcharge, overdischarge, and high-current (pulse) cycling can also exert an adverse impact on the LIBs, especially when these factors act either individually or in combination. Herein, this review firstly presents the concept of lithium-based lifeforms, in conjunction with the groundbreaking proposal of instantaneous and hysteresis performances to comprehensively evaluate the whole life of LIBs, which is expected to guide the design of advanced LIBs with high performance and substantially enhance the accuracy of predictive and early-warning models for batteries and modules.</div></div>\",\"PeriodicalId\":386,\"journal\":{\"name\":\"Materials Science and Engineering: R: Reports\",\"volume\":\"167 \",\"pages\":\"Article 101096\"},\"PeriodicalIF\":31.6000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: R: Reports\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927796X25001743\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X25001743","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锂离子电池(LIBs)主要通过锂离子扩散和电子传递过程发挥作用,这可以比喻为生物功能。就像有生命的有机体需要特定的条件来保持体内平衡一样,锂电池中任何偏离最佳工作参数都可能导致性能下降、安全性和可靠性降低,最终可能导致电池故障甚至热失控。为了确保可靠的运行,对lib在极端环境或操作条件下(如机械挤压、振动、高温和低温、超重力和微重力以及低气压)的瞬时和滞后性能进行全面的了解和影响分析是必不可少的,这可以准确评估其在整个使用寿命内满足能源和电力需求的能力。此外,与过充、过放和大电流(脉冲)循环相关的一系列关键挑战也会对锂电池产生不利影响,特别是当这些因素单独或共同作用时。本文首次提出了锂基生命形式的概念,并开创性地提出了瞬时和滞后性能来综合评估锂电池的全寿命,这有望指导高性能先进锂电池的设计,并大幅提高电池和模块预测和预警模型的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lithium-based lifeforms: Influence analysis of instantaneous and hysteresis performances in lithium-ion batteries
Lithium-ion batteries (LIBs) mainly function via the processes of lithium-ion diffusion and electron transport, which can be metaphorically compared to biological functions. Just like living lifeform organisms that need particular conditions to keep homeostasis, any departure from optimal operating parameters in LIBs may result in performance degradation, safety and reliability compromise, and ultimately may lead to battery failure or even to thermal runaway. To ensure reliable operation, a thorough understanding and influence analysis of the instantaneous and hysteresis performance for LIBs under the extreme environments or operating conditions, such as mechanical extrusion, vibration, high- and low- temperatures, supergravity and microgravity, and low atmospheric pressure, is essential, which enables accurate assessment of their ability to meet energy and power demands over their whole service life. Additionally, a series of critical challenges associated with overcharge, overdischarge, and high-current (pulse) cycling can also exert an adverse impact on the LIBs, especially when these factors act either individually or in combination. Herein, this review firstly presents the concept of lithium-based lifeforms, in conjunction with the groundbreaking proposal of instantaneous and hysteresis performances to comprehensively evaluate the whole life of LIBs, which is expected to guide the design of advanced LIBs with high performance and substantially enhance the accuracy of predictive and early-warning models for batteries and modules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science and Engineering: R: Reports
Materials Science and Engineering: R: Reports 工程技术-材料科学:综合
CiteScore
60.50
自引率
0.30%
发文量
19
审稿时长
34 days
期刊介绍: Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews. The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信