{"title":"技术说明:通过测量雾化器中细菌悬浮液的吸光度来预测细菌气溶胶浓度:以金黄色葡萄球菌为例","authors":"Dongmin Shin, Jungho Hwang","doi":"10.1016/j.jaerosci.2025.106674","DOIUrl":null,"url":null,"abstract":"<div><div>Airborne bacteria affect indoor air quality and pose health risks. To develop airborne bacterial samplers and detection devices, aerosol experiments should first be conducted using an atomizer in the laboratory to determine the bacterial concentration in an actual indoor air environment. For example, the concentration of <em>Staphylococcus aureus</em> in indoor air has been reported to be 10<sup>1</sup>–10<sup>3</sup> colony-forming units (CFUs) per 1 m<sup>3</sup> of air. The bacterial aerosol concentration generated using an atomizer depends on the concentration of the liquid suspension containing bacterial particles inside the atomizer. Moreover, such low concentrations of airborne bacteria require the precise control of the suspension concentration. In addition, traditional methods of measuring bioaerosol concentrations depend on culture-based techniques, which only measure a portion of the total microbial community and have the drawback of being slow, often taking one to several days to complete. This study proposes a predictive methodology for estimating airborne bacterial concentration (CFUs/m<sup>3</sup>) based on the absorbance measurement of a bacterial suspension in an atomizer using UV/VIS spectroscopy. This methodology involves establishing a correlation curve by preparing different concentrations of bacterial suspensions, measuring their absorbances, aerosolizing each suspension using an atomizer, and sampling airborne bacteria for CFU enumeration. With the obtained correlation curve, simply measuring the absorbance of a certain bacterial suspension can yield the CFU concentration of bacteria in the air without repeatedly performing time-consuming experiments. <em>Staphylococcus aureus</em> was used as an example species, and the R<sup>2</sup> between the CFU concentrations in air and the absorbances of the suspensions was 0.9976.</div></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":"190 ","pages":"Article 106674"},"PeriodicalIF":2.9000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technical note: Prediction of bacterial aerosol concentration via absorbance measurement of bacterial suspension in atomizer: Staphylococcus aureus as an example\",\"authors\":\"Dongmin Shin, Jungho Hwang\",\"doi\":\"10.1016/j.jaerosci.2025.106674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Airborne bacteria affect indoor air quality and pose health risks. To develop airborne bacterial samplers and detection devices, aerosol experiments should first be conducted using an atomizer in the laboratory to determine the bacterial concentration in an actual indoor air environment. For example, the concentration of <em>Staphylococcus aureus</em> in indoor air has been reported to be 10<sup>1</sup>–10<sup>3</sup> colony-forming units (CFUs) per 1 m<sup>3</sup> of air. The bacterial aerosol concentration generated using an atomizer depends on the concentration of the liquid suspension containing bacterial particles inside the atomizer. Moreover, such low concentrations of airborne bacteria require the precise control of the suspension concentration. In addition, traditional methods of measuring bioaerosol concentrations depend on culture-based techniques, which only measure a portion of the total microbial community and have the drawback of being slow, often taking one to several days to complete. This study proposes a predictive methodology for estimating airborne bacterial concentration (CFUs/m<sup>3</sup>) based on the absorbance measurement of a bacterial suspension in an atomizer using UV/VIS spectroscopy. This methodology involves establishing a correlation curve by preparing different concentrations of bacterial suspensions, measuring their absorbances, aerosolizing each suspension using an atomizer, and sampling airborne bacteria for CFU enumeration. With the obtained correlation curve, simply measuring the absorbance of a certain bacterial suspension can yield the CFU concentration of bacteria in the air without repeatedly performing time-consuming experiments. <em>Staphylococcus aureus</em> was used as an example species, and the R<sup>2</sup> between the CFU concentrations in air and the absorbances of the suspensions was 0.9976.</div></div>\",\"PeriodicalId\":14880,\"journal\":{\"name\":\"Journal of Aerosol Science\",\"volume\":\"190 \",\"pages\":\"Article 106674\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aerosol Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002185022500151X\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerosol Science","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002185022500151X","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Technical note: Prediction of bacterial aerosol concentration via absorbance measurement of bacterial suspension in atomizer: Staphylococcus aureus as an example
Airborne bacteria affect indoor air quality and pose health risks. To develop airborne bacterial samplers and detection devices, aerosol experiments should first be conducted using an atomizer in the laboratory to determine the bacterial concentration in an actual indoor air environment. For example, the concentration of Staphylococcus aureus in indoor air has been reported to be 101–103 colony-forming units (CFUs) per 1 m3 of air. The bacterial aerosol concentration generated using an atomizer depends on the concentration of the liquid suspension containing bacterial particles inside the atomizer. Moreover, such low concentrations of airborne bacteria require the precise control of the suspension concentration. In addition, traditional methods of measuring bioaerosol concentrations depend on culture-based techniques, which only measure a portion of the total microbial community and have the drawback of being slow, often taking one to several days to complete. This study proposes a predictive methodology for estimating airborne bacterial concentration (CFUs/m3) based on the absorbance measurement of a bacterial suspension in an atomizer using UV/VIS spectroscopy. This methodology involves establishing a correlation curve by preparing different concentrations of bacterial suspensions, measuring their absorbances, aerosolizing each suspension using an atomizer, and sampling airborne bacteria for CFU enumeration. With the obtained correlation curve, simply measuring the absorbance of a certain bacterial suspension can yield the CFU concentration of bacteria in the air without repeatedly performing time-consuming experiments. Staphylococcus aureus was used as an example species, and the R2 between the CFU concentrations in air and the absorbances of the suspensions was 0.9976.
期刊介绍:
Founded in 1970, the Journal of Aerosol Science considers itself the prime vehicle for the publication of original work as well as reviews related to fundamental and applied aerosol research, as well as aerosol instrumentation. Its content is directed at scientists working in engineering disciplines, as well as physics, chemistry, and environmental sciences.
The editors welcome submissions of papers describing recent experimental, numerical, and theoretical research related to the following topics:
1. Fundamental Aerosol Science.
2. Applied Aerosol Science.
3. Instrumentation & Measurement Methods.