WAScope:检测隐私数据泄漏与web应用程序特定的API混淆

IF 6.8 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Yu Nie , Jianming Fu , Xinghang Lv , Chao Li , Shixiong Yang , Guojun Peng
{"title":"WAScope:检测隐私数据泄漏与web应用程序特定的API混淆","authors":"Yu Nie ,&nbsp;Jianming Fu ,&nbsp;Xinghang Lv ,&nbsp;Chao Li ,&nbsp;Shixiong Yang ,&nbsp;Guojun Peng","doi":"10.1016/j.aej.2025.08.006","DOIUrl":null,"url":null,"abstract":"<div><div>The number of web applications deployed on the internet has exceeded one billion, accumulating vast amounts of user privacy data. The compromise of such data may lead to severe consequences. While existing research has primarily focused on data exfiltration through system APIs, the security risks posed by application-specific APIs have been largely overlooked. These APIs directly manage the collection, processing, and transmission of sensitive user data, making them critical attack surfaces. This study systematically investigates privacy data leakage caused by unauthorized access through web application-specific APIs. We presented <em>WAScope (Web Application-specific API Scope)</em>, a dynamic analysis tool that detects privacy leakage by combining API confusion techniques with a customized privacy dictionary. We conducted experiments on 100 real-world web applications using <em>WAScope. The tool identified 15,593 privacy-aware API data flows across 76 applications, among which 2,757 APIs were manually confirmed to expose sensitive data due to improper access controls.</em> Manual validation further validated the findings, revealing a 9% false positive rate. We reported these vulnerabilities to the China National Vulnerability Database (CNVD), receiving 10 official CNVD-IDs that demonstrate the effectiveness of <em>WAScope</em>.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"128 ","pages":"Pages 1145-1158"},"PeriodicalIF":6.8000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WAScope: Detecting privacy data leakage with web application-specific API confusion\",\"authors\":\"Yu Nie ,&nbsp;Jianming Fu ,&nbsp;Xinghang Lv ,&nbsp;Chao Li ,&nbsp;Shixiong Yang ,&nbsp;Guojun Peng\",\"doi\":\"10.1016/j.aej.2025.08.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The number of web applications deployed on the internet has exceeded one billion, accumulating vast amounts of user privacy data. The compromise of such data may lead to severe consequences. While existing research has primarily focused on data exfiltration through system APIs, the security risks posed by application-specific APIs have been largely overlooked. These APIs directly manage the collection, processing, and transmission of sensitive user data, making them critical attack surfaces. This study systematically investigates privacy data leakage caused by unauthorized access through web application-specific APIs. We presented <em>WAScope (Web Application-specific API Scope)</em>, a dynamic analysis tool that detects privacy leakage by combining API confusion techniques with a customized privacy dictionary. We conducted experiments on 100 real-world web applications using <em>WAScope. The tool identified 15,593 privacy-aware API data flows across 76 applications, among which 2,757 APIs were manually confirmed to expose sensitive data due to improper access controls.</em> Manual validation further validated the findings, revealing a 9% false positive rate. We reported these vulnerabilities to the China National Vulnerability Database (CNVD), receiving 10 official CNVD-IDs that demonstrate the effectiveness of <em>WAScope</em>.</div></div>\",\"PeriodicalId\":7484,\"journal\":{\"name\":\"alexandria engineering journal\",\"volume\":\"128 \",\"pages\":\"Pages 1145-1158\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"alexandria engineering journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110016825008774\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016825008774","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

互联网上部署的web应用程序数量已超过10亿,积累了大量用户隐私数据。这些数据泄露可能会导致严重的后果。虽然现有的研究主要集中在通过系统api进行数据泄露,但特定于应用程序的api所带来的安全风险在很大程度上被忽视了。这些api直接管理敏感用户数据的收集、处理和传输,使其成为关键的攻击面。本研究系统地调查了通过web应用程序特定api未经授权访问所导致的隐私数据泄漏。我们介绍了WAScope (Web Application-specific API Scope),这是一个动态分析工具,通过将API混淆技术与自定义隐私字典相结合来检测隐私泄露。我们使用WAScope在100个真实的web应用程序上进行了实验。该工具在76个应用程序中识别了15,593个隐私感知API数据流,其中2,757个API由于访问控制不当而被手动确认为暴露敏感数据。人工验证进一步验证了结果,显示出9%的假阳性率。我们向中国国家漏洞数据库(CNVD)报告了这些漏洞,收到了10个官方CNVD- id,证明了WAScope的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
WAScope: Detecting privacy data leakage with web application-specific API confusion
The number of web applications deployed on the internet has exceeded one billion, accumulating vast amounts of user privacy data. The compromise of such data may lead to severe consequences. While existing research has primarily focused on data exfiltration through system APIs, the security risks posed by application-specific APIs have been largely overlooked. These APIs directly manage the collection, processing, and transmission of sensitive user data, making them critical attack surfaces. This study systematically investigates privacy data leakage caused by unauthorized access through web application-specific APIs. We presented WAScope (Web Application-specific API Scope), a dynamic analysis tool that detects privacy leakage by combining API confusion techniques with a customized privacy dictionary. We conducted experiments on 100 real-world web applications using WAScope. The tool identified 15,593 privacy-aware API data flows across 76 applications, among which 2,757 APIs were manually confirmed to expose sensitive data due to improper access controls. Manual validation further validated the findings, revealing a 9% false positive rate. We reported these vulnerabilities to the China National Vulnerability Database (CNVD), receiving 10 official CNVD-IDs that demonstrate the effectiveness of WAScope.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信