DeepHVI:一个多模态深度学习框架,用于使用蛋白质语言模型预测人-病毒蛋白质-蛋白质相互作用

IF 3 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Xindi Wang , Junyu Luo , Xiyang Cai , Ruibin Liu , Yixue Li , Chitin Hon
{"title":"DeepHVI:一个多模态深度学习框架,用于使用蛋白质语言模型预测人-病毒蛋白质-蛋白质相互作用","authors":"Xindi Wang ,&nbsp;Junyu Luo ,&nbsp;Xiyang Cai ,&nbsp;Ruibin Liu ,&nbsp;Yixue Li ,&nbsp;Chitin Hon","doi":"10.1016/j.bsheal.2025.07.005","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding human-virus protein-protein interactions is critical for studying molecular mechanisms driving viral infection, immune evasion, and propagation, thereby informing strategies for public health. Here, we introduce a novel multimodal deep learning framework that integrates high-confidence experimental datasets to systematically predict putative interactions between human and viral proteins. Our approach incorporates two complementary tasks: binary classification for interaction prediction and conditional sequence generation to identify interacting protein partners. By leveraging protein language models and multimodal fusion, the framework demonstrates improved accuracy in identifying biologically relevant interactions. For empirical validation, we applied this method to predict severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-human interactions, identifying candidate proteins absent from training data, several of which were corroborated by independent studies. These predictions offer critical insights into potential therapeutic targets, facilitating the design of antiviral drugs and vaccines. By enabling rapid, cost-effective discovery pipelines, our study contributes to pandemic preparedness and public health interventions, underscoring its value in combating emerging infectious diseases.</div></div>","PeriodicalId":36178,"journal":{"name":"Biosafety and Health","volume":"7 4","pages":"Pages 257-266"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DeepHVI: A multimodal deep learning framework for predicting human-virus protein-protein interactions using protein language models\",\"authors\":\"Xindi Wang ,&nbsp;Junyu Luo ,&nbsp;Xiyang Cai ,&nbsp;Ruibin Liu ,&nbsp;Yixue Li ,&nbsp;Chitin Hon\",\"doi\":\"10.1016/j.bsheal.2025.07.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Understanding human-virus protein-protein interactions is critical for studying molecular mechanisms driving viral infection, immune evasion, and propagation, thereby informing strategies for public health. Here, we introduce a novel multimodal deep learning framework that integrates high-confidence experimental datasets to systematically predict putative interactions between human and viral proteins. Our approach incorporates two complementary tasks: binary classification for interaction prediction and conditional sequence generation to identify interacting protein partners. By leveraging protein language models and multimodal fusion, the framework demonstrates improved accuracy in identifying biologically relevant interactions. For empirical validation, we applied this method to predict severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-human interactions, identifying candidate proteins absent from training data, several of which were corroborated by independent studies. These predictions offer critical insights into potential therapeutic targets, facilitating the design of antiviral drugs and vaccines. By enabling rapid, cost-effective discovery pipelines, our study contributes to pandemic preparedness and public health interventions, underscoring its value in combating emerging infectious diseases.</div></div>\",\"PeriodicalId\":36178,\"journal\":{\"name\":\"Biosafety and Health\",\"volume\":\"7 4\",\"pages\":\"Pages 257-266\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosafety and Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590053625000989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosafety and Health","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590053625000989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

了解人-病毒蛋白-蛋白相互作用对于研究驱动病毒感染、免疫逃避和繁殖的分子机制至关重要,从而为公共卫生战略提供信息。在这里,我们引入了一种新的多模态深度学习框架,该框架集成了高置信度的实验数据集,以系统地预测人类和病毒蛋白质之间假定的相互作用。我们的方法结合了两个互补的任务:用于相互作用预测的二元分类和用于识别相互作用蛋白质伙伴的条件序列生成。通过利用蛋白质语言模型和多模态融合,该框架在识别生物学相关相互作用方面证明了更高的准确性。为了进行实证验证,我们应用该方法预测了严重急性呼吸综合征冠状病毒2 (SARS-CoV-2)与人类的相互作用,识别了训练数据中缺失的候选蛋白,其中一些得到了独立研究的证实。这些预测为潜在的治疗靶点提供了重要的见解,促进了抗病毒药物和疫苗的设计。通过实现快速、具有成本效益的发现管道,我们的研究有助于大流行病的防范和公共卫生干预,强调了其在防治新发传染病方面的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DeepHVI: A multimodal deep learning framework for predicting human-virus protein-protein interactions using protein language models
Understanding human-virus protein-protein interactions is critical for studying molecular mechanisms driving viral infection, immune evasion, and propagation, thereby informing strategies for public health. Here, we introduce a novel multimodal deep learning framework that integrates high-confidence experimental datasets to systematically predict putative interactions between human and viral proteins. Our approach incorporates two complementary tasks: binary classification for interaction prediction and conditional sequence generation to identify interacting protein partners. By leveraging protein language models and multimodal fusion, the framework demonstrates improved accuracy in identifying biologically relevant interactions. For empirical validation, we applied this method to predict severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-human interactions, identifying candidate proteins absent from training data, several of which were corroborated by independent studies. These predictions offer critical insights into potential therapeutic targets, facilitating the design of antiviral drugs and vaccines. By enabling rapid, cost-effective discovery pipelines, our study contributes to pandemic preparedness and public health interventions, underscoring its value in combating emerging infectious diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosafety and Health
Biosafety and Health Medicine-Infectious Diseases
CiteScore
7.60
自引率
0.00%
发文量
116
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信