{"title":"GR-WiFi:一个基于GNU无线电的WiFi平台,具有单用户和多用户MIMO功能","authors":"Natong Lin , Zelin Yun , Shengli Zhou , Song Han","doi":"10.1016/j.phycom.2025.102812","DOIUrl":null,"url":null,"abstract":"<div><div>Since its first release, WiFi has been highly successful in providing wireless local area networks. The ever-evolving IEEE 802.11 standards continue to add new features to keep up with the trend of increasing numbers of mobile devices and the growth of Internet of Things (IoT) applications. Unfortunately, the lack of open-source IEEE 802.11 testbeds in the community limits the development and performance evaluation of those new features. Motivated by an existing popular open-source software-defined radio (SDR) package for single-user single-stream transmission based on the IEEE 802.11/a/g/p standard, in this paper we present GR-WiFi, an open-source package for single-user and multi-user multi-input multi-output (MIMO) transmissions based on 802.11n and 802.11ac standards. The distinct features of GR-WiFi include the support of parallel data streams to single or multiple users, and the compatible preamble processing to allow the co-existence of conventional, high-throughput (HT) and very-high-throughput (VHT) traffics. The performance of GR-WiFi is evaluated through both extensive simulation and real-world experiments.</div></div>","PeriodicalId":48707,"journal":{"name":"Physical Communication","volume":"72 ","pages":"Article 102812"},"PeriodicalIF":2.2000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GR-WiFi: A GNU radio based WiFi platform with single-user and multi-user MIMO capability\",\"authors\":\"Natong Lin , Zelin Yun , Shengli Zhou , Song Han\",\"doi\":\"10.1016/j.phycom.2025.102812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Since its first release, WiFi has been highly successful in providing wireless local area networks. The ever-evolving IEEE 802.11 standards continue to add new features to keep up with the trend of increasing numbers of mobile devices and the growth of Internet of Things (IoT) applications. Unfortunately, the lack of open-source IEEE 802.11 testbeds in the community limits the development and performance evaluation of those new features. Motivated by an existing popular open-source software-defined radio (SDR) package for single-user single-stream transmission based on the IEEE 802.11/a/g/p standard, in this paper we present GR-WiFi, an open-source package for single-user and multi-user multi-input multi-output (MIMO) transmissions based on 802.11n and 802.11ac standards. The distinct features of GR-WiFi include the support of parallel data streams to single or multiple users, and the compatible preamble processing to allow the co-existence of conventional, high-throughput (HT) and very-high-throughput (VHT) traffics. The performance of GR-WiFi is evaluated through both extensive simulation and real-world experiments.</div></div>\",\"PeriodicalId\":48707,\"journal\":{\"name\":\"Physical Communication\",\"volume\":\"72 \",\"pages\":\"Article 102812\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Communication\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874490725002150\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874490725002150","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
GR-WiFi: A GNU radio based WiFi platform with single-user and multi-user MIMO capability
Since its first release, WiFi has been highly successful in providing wireless local area networks. The ever-evolving IEEE 802.11 standards continue to add new features to keep up with the trend of increasing numbers of mobile devices and the growth of Internet of Things (IoT) applications. Unfortunately, the lack of open-source IEEE 802.11 testbeds in the community limits the development and performance evaluation of those new features. Motivated by an existing popular open-source software-defined radio (SDR) package for single-user single-stream transmission based on the IEEE 802.11/a/g/p standard, in this paper we present GR-WiFi, an open-source package for single-user and multi-user multi-input multi-output (MIMO) transmissions based on 802.11n and 802.11ac standards. The distinct features of GR-WiFi include the support of parallel data streams to single or multiple users, and the compatible preamble processing to allow the co-existence of conventional, high-throughput (HT) and very-high-throughput (VHT) traffics. The performance of GR-WiFi is evaluated through both extensive simulation and real-world experiments.
期刊介绍:
PHYCOM: Physical Communication is an international and archival journal providing complete coverage of all topics of interest to those involved in all aspects of physical layer communications. Theoretical research contributions presenting new techniques, concepts or analyses, applied contributions reporting on experiences and experiments, and tutorials are published.
Topics of interest include but are not limited to:
Physical layer issues of Wireless Local Area Networks, WiMAX, Wireless Mesh Networks, Sensor and Ad Hoc Networks, PCS Systems; Radio access protocols and algorithms for the physical layer; Spread Spectrum Communications; Channel Modeling; Detection and Estimation; Modulation and Coding; Multiplexing and Carrier Techniques; Broadband Wireless Communications; Wireless Personal Communications; Multi-user Detection; Signal Separation and Interference rejection: Multimedia Communications over Wireless; DSP Applications to Wireless Systems; Experimental and Prototype Results; Multiple Access Techniques; Space-time Processing; Synchronization Techniques; Error Control Techniques; Cryptography; Software Radios; Tracking; Resource Allocation and Inference Management; Multi-rate and Multi-carrier Communications; Cross layer Design and Optimization; Propagation and Channel Characterization; OFDM Systems; MIMO Systems; Ultra-Wideband Communications; Cognitive Radio System Architectures; Platforms and Hardware Implementations for the Support of Cognitive, Radio Systems; Cognitive Radio Resource Management and Dynamic Spectrum Sharing.