{"title":"螺旋波导的导模","authors":"Jay Gopalakrishnan, Michael Neunteufel","doi":"10.1016/j.wavemoti.2025.103621","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies guided transverse scalar modes propagating through helically coiled waveguides. Modeling the modes as solutions of the Helmholtz equation within the three-dimensional (3D) waveguide geometry, a propagation ansatz transforms the mode-finding problem into a 3D quadratic eigenproblem. Through an untwisting map, the problem is shown to be equivalent to a 3D quadratic eigenproblem on a straightened configuration. Next, exploiting the constant torsion and curvature of the Frenet frame of a circular helix, the 3D eigenproblem is further reduced to a two-dimensional (2D) eigenproblem on the waveguide cross section. All three eigenproblems are numerically treated. As expected, significant computational savings are realized in the 2D model. A few nontrivial numerical techniques are needed to make the computation of modes within the 3D geometry feasible. They are presented along with a procedure to effectively filter out unwanted non-propagating eigenfunctions. Computational results show that the geometric effect of coiling is to shift the localization of guided modes away from the coiling center. The variations in modes as coiling pitch is changed are reported considering the example of a coiled optical fiber.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"139 ","pages":"Article 103621"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Guided modes of helical waveguides\",\"authors\":\"Jay Gopalakrishnan, Michael Neunteufel\",\"doi\":\"10.1016/j.wavemoti.2025.103621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper studies guided transverse scalar modes propagating through helically coiled waveguides. Modeling the modes as solutions of the Helmholtz equation within the three-dimensional (3D) waveguide geometry, a propagation ansatz transforms the mode-finding problem into a 3D quadratic eigenproblem. Through an untwisting map, the problem is shown to be equivalent to a 3D quadratic eigenproblem on a straightened configuration. Next, exploiting the constant torsion and curvature of the Frenet frame of a circular helix, the 3D eigenproblem is further reduced to a two-dimensional (2D) eigenproblem on the waveguide cross section. All three eigenproblems are numerically treated. As expected, significant computational savings are realized in the 2D model. A few nontrivial numerical techniques are needed to make the computation of modes within the 3D geometry feasible. They are presented along with a procedure to effectively filter out unwanted non-propagating eigenfunctions. Computational results show that the geometric effect of coiling is to shift the localization of guided modes away from the coiling center. The variations in modes as coiling pitch is changed are reported considering the example of a coiled optical fiber.</div></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":\"139 \",\"pages\":\"Article 103621\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165212525001325\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212525001325","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
This paper studies guided transverse scalar modes propagating through helically coiled waveguides. Modeling the modes as solutions of the Helmholtz equation within the three-dimensional (3D) waveguide geometry, a propagation ansatz transforms the mode-finding problem into a 3D quadratic eigenproblem. Through an untwisting map, the problem is shown to be equivalent to a 3D quadratic eigenproblem on a straightened configuration. Next, exploiting the constant torsion and curvature of the Frenet frame of a circular helix, the 3D eigenproblem is further reduced to a two-dimensional (2D) eigenproblem on the waveguide cross section. All three eigenproblems are numerically treated. As expected, significant computational savings are realized in the 2D model. A few nontrivial numerical techniques are needed to make the computation of modes within the 3D geometry feasible. They are presented along with a procedure to effectively filter out unwanted non-propagating eigenfunctions. Computational results show that the geometric effect of coiling is to shift the localization of guided modes away from the coiling center. The variations in modes as coiling pitch is changed are reported considering the example of a coiled optical fiber.
期刊介绍:
Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics.
The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.