具有Neumann边界条件的波动方程的自适应时域边界元方法

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
A. Aimi , G. Di Credico , H. Gimperlein , C. Guardasoni
{"title":"具有Neumann边界条件的波动方程的自适应时域边界元方法","authors":"A. Aimi ,&nbsp;G. Di Credico ,&nbsp;H. Gimperlein ,&nbsp;C. Guardasoni","doi":"10.1016/j.camwa.2025.08.020","DOIUrl":null,"url":null,"abstract":"<div><div>This article investigates adaptive mesh refinement procedures for the time-domain wave equation with Neumann boundary conditions, formulated as an equivalent hypersingular boundary integral equation. Space-adaptive and time-adaptive versions of a space-time boundary element method are presented, based on a reliable a posteriori error estimate of residual type. Numerical experiments illustrate the performance of the proposed approach.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"198 ","pages":"Pages 196-213"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive time-domain boundary element methods for the wave equation with Neumann boundary conditions\",\"authors\":\"A. Aimi ,&nbsp;G. Di Credico ,&nbsp;H. Gimperlein ,&nbsp;C. Guardasoni\",\"doi\":\"10.1016/j.camwa.2025.08.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article investigates adaptive mesh refinement procedures for the time-domain wave equation with Neumann boundary conditions, formulated as an equivalent hypersingular boundary integral equation. Space-adaptive and time-adaptive versions of a space-time boundary element method are presented, based on a reliable a posteriori error estimate of residual type. Numerical experiments illustrate the performance of the proposed approach.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"198 \",\"pages\":\"Pages 196-213\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122125003530\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125003530","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有诺伊曼边界条件的时域波动方程的自适应网格细化程序,该方程被表述为等效超奇异边界积分方程。基于残差型可靠的后验误差估计,提出了时空边界元法的空间自适应和时间自适应两种版本。数值实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive time-domain boundary element methods for the wave equation with Neumann boundary conditions
This article investigates adaptive mesh refinement procedures for the time-domain wave equation with Neumann boundary conditions, formulated as an equivalent hypersingular boundary integral equation. Space-adaptive and time-adaptive versions of a space-time boundary element method are presented, based on a reliable a posteriori error estimate of residual type. Numerical experiments illustrate the performance of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信