Kerr和Raman型非线性双曲型超材料的时域有限元法及其在增强三次谐波产生中的应用

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Fuhao Liu , Wei Yang , Jichun Li , Yunqing Huang
{"title":"Kerr和Raman型非线性双曲型超材料的时域有限元法及其在增强三次谐波产生中的应用","authors":"Fuhao Liu ,&nbsp;Wei Yang ,&nbsp;Jichun Li ,&nbsp;Yunqing Huang","doi":"10.1016/j.camwa.2025.08.019","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we derive a time-dependent Maxwell's equation model to simulate electromagnetic wave propagation in nonlinear hyperbolic metamaterials. We approximate both permittivity and permeability by the Drude-Lorentz model and consider the third-order nonlinear polarization for this model. We propose a semi-implicit time-domain finite element scheme, and establish the stability of this numerical scheme. This model and our proposed numerical method can characterize both the linear and nonlinear properties of materials and aid in designing nonlinear hyperbolic metamaterials to enhance the high harmonic generation. Extensive numerical results confirm the optimal convergence rate of our numerical scheme and showcase the enhancement of high harmonic generation in two-dimensional nonlinear multilayer hyperbolic metamaterials. This paper is the first one on developing and analyzing a time-domain finite element method to simulate the electromagnetic wave interaction with nonlinear hyperbolic metamaterials.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"198 ","pages":"Pages 178-195"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A time-domain finite element method for Kerr and Raman type nonlinear hyperbolic metamaterials with application for enhanced third-harmonic generation\",\"authors\":\"Fuhao Liu ,&nbsp;Wei Yang ,&nbsp;Jichun Li ,&nbsp;Yunqing Huang\",\"doi\":\"10.1016/j.camwa.2025.08.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we derive a time-dependent Maxwell's equation model to simulate electromagnetic wave propagation in nonlinear hyperbolic metamaterials. We approximate both permittivity and permeability by the Drude-Lorentz model and consider the third-order nonlinear polarization for this model. We propose a semi-implicit time-domain finite element scheme, and establish the stability of this numerical scheme. This model and our proposed numerical method can characterize both the linear and nonlinear properties of materials and aid in designing nonlinear hyperbolic metamaterials to enhance the high harmonic generation. Extensive numerical results confirm the optimal convergence rate of our numerical scheme and showcase the enhancement of high harmonic generation in two-dimensional nonlinear multilayer hyperbolic metamaterials. This paper is the first one on developing and analyzing a time-domain finite element method to simulate the electromagnetic wave interaction with nonlinear hyperbolic metamaterials.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"198 \",\"pages\":\"Pages 178-195\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122125003529\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125003529","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文导出了一个随时间变化的麦克斯韦方程模型来模拟电磁波在非线性双曲型超材料中的传播。我们用德鲁德-洛伦兹模型近似介电常数和磁导率,并考虑该模型的三阶非线性极化。提出了一种半隐式时域有限元格式,并证明了该格式的稳定性。该模型和我们提出的数值方法可以同时表征材料的线性和非线性特性,有助于设计非线性双曲型超材料以增强高谐波的产生。大量的数值结果证实了我们的数值格式的最优收敛速度,并展示了二维非线性多层双曲超材料中高谐波产生的增强。本文首次提出并分析了一种时域有限元方法来模拟电磁波与非线性双曲型超材料的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A time-domain finite element method for Kerr and Raman type nonlinear hyperbolic metamaterials with application for enhanced third-harmonic generation
In this paper, we derive a time-dependent Maxwell's equation model to simulate electromagnetic wave propagation in nonlinear hyperbolic metamaterials. We approximate both permittivity and permeability by the Drude-Lorentz model and consider the third-order nonlinear polarization for this model. We propose a semi-implicit time-domain finite element scheme, and establish the stability of this numerical scheme. This model and our proposed numerical method can characterize both the linear and nonlinear properties of materials and aid in designing nonlinear hyperbolic metamaterials to enhance the high harmonic generation. Extensive numerical results confirm the optimal convergence rate of our numerical scheme and showcase the enhancement of high harmonic generation in two-dimensional nonlinear multilayer hyperbolic metamaterials. This paper is the first one on developing and analyzing a time-domain finite element method to simulate the electromagnetic wave interaction with nonlinear hyperbolic metamaterials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信