{"title":"三维椭圆型问题虚元法的最优最大范数估计","authors":"Wenming He , Ren Zhao","doi":"10.1016/j.camwa.2025.08.011","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we derive the optimal maximum norm estimates for virtual element methods for elliptic problems in three dimensions under suitable local smoothness assumption of the solution. Finally, numerical examples are used to investigate our main results on tetrahedral and polyhedral meshes.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"197 ","pages":"Pages 167-182"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal maximum norm estimates of virtual element methods for elliptic problem in three dimensions\",\"authors\":\"Wenming He , Ren Zhao\",\"doi\":\"10.1016/j.camwa.2025.08.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we derive the optimal maximum norm estimates for virtual element methods for elliptic problems in three dimensions under suitable local smoothness assumption of the solution. Finally, numerical examples are used to investigate our main results on tetrahedral and polyhedral meshes.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"197 \",\"pages\":\"Pages 167-182\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122125003384\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125003384","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Optimal maximum norm estimates of virtual element methods for elliptic problem in three dimensions
In this article, we derive the optimal maximum norm estimates for virtual element methods for elliptic problems in three dimensions under suitable local smoothness assumption of the solution. Finally, numerical examples are used to investigate our main results on tetrahedral and polyhedral meshes.
期刊介绍:
Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).