吸气式浮级上低雷诺数气膜流归一化静压空间变化的反立方标度

IF 2.6 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Hiroki Suzuki , Hiroaki Oka , Jun Fujiwara , Toshinori Kouchi
{"title":"吸气式浮级上低雷诺数气膜流归一化静压空间变化的反立方标度","authors":"Hiroki Suzuki ,&nbsp;Hiroaki Oka ,&nbsp;Jun Fujiwara ,&nbsp;Toshinori Kouchi","doi":"10.1016/j.ijheatfluidflow.2025.110008","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates characteristics of flow kinetic energy and static pressure within a floating stage with suction holes using direct numerical simulation (DNS). The analysis targets situations where a thin film is floated and stabilized at a height of <span><math><mrow><mn>30</mn><mtext>–</mtext><mn>80</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span> above the floating stage, reflecting practical applications. On this stage, jet inlets and suction holes are arranged in a grid pattern. A characteristic fundamental flow element is extracted and analyzed in this study. The flow is confirmed to be an incompressible flow governed by the continuum approximation, as evidenced by the Mach number and Knudsen number. Here, maximum Mach number: <span><math><mrow><mn>0</mn><mo>.</mo><mn>17</mn><mtext>–</mtext><mn>0</mn><mo>.</mo><mn>18</mn></mrow></math></span> and Knudsen number range (for the levitation gaps of <span><math><mrow><mn>30</mn><mtext>–</mtext><mn>80</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>): <span><math><mrow><mn>0</mn><mo>.</mo><mn>0009</mn><mtext>–</mtext><mn>0</mn><mo>.</mo><mn>002</mn></mrow></math></span>, respectively. Meanwhile, the bulk Reynolds number indicates that the flow is within the applicability range of the Reynolds lubrication equation, allowing the use of governing equations that exclude inertial terms. Here, the bulk Reynolds numbers examined: 200, 50, and 12.5. Three key parameters are defined to characterize this flow: the ratio of the inlet radius to the suction hole radius <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>in</mi></mrow></msub><mo>/</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>out</mi></mrow></msub></mrow></math></span>, the non-dimensionalized floating height <span><math><mi>h</mi></math></span>, and the horizontal domain width of the fundamental flow element <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow></msub></math></span>. The DNS is performed using a validated computational code previously applied to direct numerical simulations of turbulent channel flows. The results are verified in terms of grid convergence and zero viscous divergence required by mass conservation. Subsequent analysis is then applied to elucidate the flow kinetic energy and static pressure characteristics. The results demonstrate that the steady-state values of the flow kinetic energy and the spatial root mean square (RMS) of the static pressure variation, normalized by their respective values at <span><math><mrow><mi>h</mi><mo>=</mo><mn>1</mn></mrow></math></span>, are independent of <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>in</mi></mrow></msub><mo>/</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>out</mi></mrow></msub></mrow></math></span> and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow></msub></math></span>. These quantities are inversely proportional to <span><math><msup><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>h</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>, respectively.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"117 ","pages":"Article 110008"},"PeriodicalIF":2.6000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse-cubic scaling of normalized static-pressure spatial variations in low-Reynolds-number air-film flows over suction-type floating stages\",\"authors\":\"Hiroki Suzuki ,&nbsp;Hiroaki Oka ,&nbsp;Jun Fujiwara ,&nbsp;Toshinori Kouchi\",\"doi\":\"10.1016/j.ijheatfluidflow.2025.110008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates characteristics of flow kinetic energy and static pressure within a floating stage with suction holes using direct numerical simulation (DNS). The analysis targets situations where a thin film is floated and stabilized at a height of <span><math><mrow><mn>30</mn><mtext>–</mtext><mn>80</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span> above the floating stage, reflecting practical applications. On this stage, jet inlets and suction holes are arranged in a grid pattern. A characteristic fundamental flow element is extracted and analyzed in this study. The flow is confirmed to be an incompressible flow governed by the continuum approximation, as evidenced by the Mach number and Knudsen number. Here, maximum Mach number: <span><math><mrow><mn>0</mn><mo>.</mo><mn>17</mn><mtext>–</mtext><mn>0</mn><mo>.</mo><mn>18</mn></mrow></math></span> and Knudsen number range (for the levitation gaps of <span><math><mrow><mn>30</mn><mtext>–</mtext><mn>80</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>): <span><math><mrow><mn>0</mn><mo>.</mo><mn>0009</mn><mtext>–</mtext><mn>0</mn><mo>.</mo><mn>002</mn></mrow></math></span>, respectively. Meanwhile, the bulk Reynolds number indicates that the flow is within the applicability range of the Reynolds lubrication equation, allowing the use of governing equations that exclude inertial terms. Here, the bulk Reynolds numbers examined: 200, 50, and 12.5. Three key parameters are defined to characterize this flow: the ratio of the inlet radius to the suction hole radius <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>in</mi></mrow></msub><mo>/</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>out</mi></mrow></msub></mrow></math></span>, the non-dimensionalized floating height <span><math><mi>h</mi></math></span>, and the horizontal domain width of the fundamental flow element <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow></msub></math></span>. The DNS is performed using a validated computational code previously applied to direct numerical simulations of turbulent channel flows. The results are verified in terms of grid convergence and zero viscous divergence required by mass conservation. Subsequent analysis is then applied to elucidate the flow kinetic energy and static pressure characteristics. The results demonstrate that the steady-state values of the flow kinetic energy and the spatial root mean square (RMS) of the static pressure variation, normalized by their respective values at <span><math><mrow><mi>h</mi><mo>=</mo><mn>1</mn></mrow></math></span>, are independent of <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>in</mi></mrow></msub><mo>/</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>out</mi></mrow></msub></mrow></math></span> and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow></msub></math></span>. These quantities are inversely proportional to <span><math><msup><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>h</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>, respectively.</div></div>\",\"PeriodicalId\":335,\"journal\":{\"name\":\"International Journal of Heat and Fluid Flow\",\"volume\":\"117 \",\"pages\":\"Article 110008\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Heat and Fluid Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142727X25002668\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142727X25002668","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

采用直接数值模拟的方法研究了带吸力孔的浮级内的流动动能和静压特性。分析的目标是薄膜漂浮并稳定在漂浮级以上30-80μm高度的情况,反映了实际应用。在这一阶段,射流入口和吸气孔呈网格状布置。本研究提取并分析了一个特征基流元。通过马赫数和克努森数证实了该流是连续统近似下的不可压缩流。其中,最大马赫数为0.17-0.18,克努森数范围(悬浮间隙为30-80μm)为0.0009-0.002。同时,体积雷诺数表明流动在雷诺润滑方程的适用范围内,允许使用不含惯性项的控制方程。这里,检查了体积雷诺数:200,50和12.5。定义了三个关键参数来表征该流动:入口半径与吸入孔半径的比值Rin/Rout、无量量化浮动高度h和基本流动单元的水平域宽度Lx。DNS使用先前应用于湍流通道流动直接数值模拟的经过验证的计算代码进行。从网格收敛和质量守恒要求的零粘性散度两个方面验证了结果。随后的分析阐明了流动动能和静压特性。结果表明,流动动能的稳态值和静压变化的空间均方根(RMS)在h=1时分别归一化后,与Rin/Rout和Lx无关。这些量分别与h2和h3成反比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverse-cubic scaling of normalized static-pressure spatial variations in low-Reynolds-number air-film flows over suction-type floating stages
This study investigates characteristics of flow kinetic energy and static pressure within a floating stage with suction holes using direct numerical simulation (DNS). The analysis targets situations where a thin film is floated and stabilized at a height of 3080μm above the floating stage, reflecting practical applications. On this stage, jet inlets and suction holes are arranged in a grid pattern. A characteristic fundamental flow element is extracted and analyzed in this study. The flow is confirmed to be an incompressible flow governed by the continuum approximation, as evidenced by the Mach number and Knudsen number. Here, maximum Mach number: 0.170.18 and Knudsen number range (for the levitation gaps of 3080μm): 0.00090.002, respectively. Meanwhile, the bulk Reynolds number indicates that the flow is within the applicability range of the Reynolds lubrication equation, allowing the use of governing equations that exclude inertial terms. Here, the bulk Reynolds numbers examined: 200, 50, and 12.5. Three key parameters are defined to characterize this flow: the ratio of the inlet radius to the suction hole radius Rin/Rout, the non-dimensionalized floating height h, and the horizontal domain width of the fundamental flow element Lx. The DNS is performed using a validated computational code previously applied to direct numerical simulations of turbulent channel flows. The results are verified in terms of grid convergence and zero viscous divergence required by mass conservation. Subsequent analysis is then applied to elucidate the flow kinetic energy and static pressure characteristics. The results demonstrate that the steady-state values of the flow kinetic energy and the spatial root mean square (RMS) of the static pressure variation, normalized by their respective values at h=1, are independent of Rin/Rout and Lx. These quantities are inversely proportional to h2 and h3, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Heat and Fluid Flow
International Journal of Heat and Fluid Flow 工程技术-工程:机械
CiteScore
5.00
自引率
7.70%
发文量
131
审稿时长
33 days
期刊介绍: The International Journal of Heat and Fluid Flow welcomes high-quality original contributions on experimental, computational, and physical aspects of convective heat transfer and fluid dynamics relevant to engineering or the environment, including multiphase and microscale flows. Papers reporting the application of these disciplines to design and development, with emphasis on new technological fields, are also welcomed. Some of these new fields include microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信