复杂二维和三维几何中的分数对流扩散系统:基于伯努利多项式的核方法

IF 2.4 2区 数学 Q1 MATHEMATICS, APPLIED
Mojtaba Fardi , Mahmoud A. Zaky , Babak Azarnavid
{"title":"复杂二维和三维几何中的分数对流扩散系统:基于伯努利多项式的核方法","authors":"Mojtaba Fardi ,&nbsp;Mahmoud A. Zaky ,&nbsp;Babak Azarnavid","doi":"10.1016/j.apnum.2025.08.004","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents an accurate meshless method for the efficient solution of nonlinear time-fractional convection-diffusion systems in complex two- and three-dimensional geometries. The proposed approach combines spatial discretization using a Bernoulli polynomial kernel function with temporal discretization via the backward differentiation formula. By employing positive definite kernels, the method achieves high spatial accuracy, while the use of the backward differentiation formula ensures high-order temporal accuracy. Convergence conditions and error bounds are rigorously analyzed using the Mittag-Leffler function. Error estimates are derived based on the spectral properties of the associated matrices, and inequalities describing error propagation over time are established. The method is tested on a variety of benchmark problems, including the Brusselator model and nonlinear coupled convection-diffusion systems, across both 2D and 3D domains. Extensive numerical experiments are carried out on various geometries-such as rectangular, circular, and spherical shapes-demonstrating the method’s robustness and accuracy in handling both regular and irregular computational domains.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"218 ","pages":"Pages 275-297"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional convection-diffusion systems in complex 2D and 3D geometries: A Bernoulli polynomial-based kernel method\",\"authors\":\"Mojtaba Fardi ,&nbsp;Mahmoud A. Zaky ,&nbsp;Babak Azarnavid\",\"doi\":\"10.1016/j.apnum.2025.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents an accurate meshless method for the efficient solution of nonlinear time-fractional convection-diffusion systems in complex two- and three-dimensional geometries. The proposed approach combines spatial discretization using a Bernoulli polynomial kernel function with temporal discretization via the backward differentiation formula. By employing positive definite kernels, the method achieves high spatial accuracy, while the use of the backward differentiation formula ensures high-order temporal accuracy. Convergence conditions and error bounds are rigorously analyzed using the Mittag-Leffler function. Error estimates are derived based on the spectral properties of the associated matrices, and inequalities describing error propagation over time are established. The method is tested on a variety of benchmark problems, including the Brusselator model and nonlinear coupled convection-diffusion systems, across both 2D and 3D domains. Extensive numerical experiments are carried out on various geometries-such as rectangular, circular, and spherical shapes-demonstrating the method’s robustness and accuracy in handling both regular and irregular computational domains.</div></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"218 \",\"pages\":\"Pages 275-297\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927425001680\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927425001680","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种精确的无网格方法,用于求解复杂二维和三维几何结构的非线性时分式对流扩散系统。该方法结合了使用伯努利多项式核函数的空间离散化和通过后向微分公式的时间离散化。该方法利用正定核实现了较高的空间精度,同时利用后向微分公式保证了高阶时间精度。利用Mittag-Leffler函数严格分析了收敛条件和误差界。误差估计是根据相关矩阵的谱特性推导出来的,并且建立了描述误差随时间传播的不等式。该方法在各种基准问题上进行了测试,包括布鲁塞尔模型和非线性耦合对流扩散系统,跨越二维和三维领域。广泛的数值实验进行了各种几何形状-如矩形,圆形和球形-证明了该方法的鲁棒性和准确性在处理规则和不规则计算域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional convection-diffusion systems in complex 2D and 3D geometries: A Bernoulli polynomial-based kernel method
This study presents an accurate meshless method for the efficient solution of nonlinear time-fractional convection-diffusion systems in complex two- and three-dimensional geometries. The proposed approach combines spatial discretization using a Bernoulli polynomial kernel function with temporal discretization via the backward differentiation formula. By employing positive definite kernels, the method achieves high spatial accuracy, while the use of the backward differentiation formula ensures high-order temporal accuracy. Convergence conditions and error bounds are rigorously analyzed using the Mittag-Leffler function. Error estimates are derived based on the spectral properties of the associated matrices, and inequalities describing error propagation over time are established. The method is tested on a variety of benchmark problems, including the Brusselator model and nonlinear coupled convection-diffusion systems, across both 2D and 3D domains. Extensive numerical experiments are carried out on various geometries-such as rectangular, circular, and spherical shapes-demonstrating the method’s robustness and accuracy in handling both regular and irregular computational domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信