{"title":"利用统计方法估算磁化强度和磁性地壳厚度,揭示被地球主磁场掩盖的岩石圈磁场","authors":"Erwan Thébault , Gauthier Hulot","doi":"10.1016/j.pepi.2025.107421","DOIUrl":null,"url":null,"abstract":"<div><div>Detailed mapping of Earth’s lithospheric magnetic field provides important insights into the composition, dynamics, and geological history of the crust. This field can be modeled using satellite and near-surface magnetic measurements. However, structures larger than approximately 2500 km in scale are obscured by the dominant magnetic signal generated by the Earth’s core. The superposition of core and crustal magnetic fields introduces ambiguities in both geodynamo and crustal magnetic source studies. Previous efforts to address this issue have included statistical estimates of upper and lower bounds on the long-wavelength components of the crustal field, as well as more deterministic predictions based on geophysical priors such as crustal magnetization and seismic Moho depth models. These approaches, however, have often produced contradictory results. In this study, we adopt a two-step strategy. The first step involves a series of regional spherical spectral analysis of the World Digital Magnetic Anomaly Grid (WDMAM2.2), without relying on any prior information from seismic or magnetization models. This approach, applied to the 5 km × 5 km WDMAM2.2 grid across 6000 regions uniformly distributed over the Earth’s surface, allows us to estimate the probability distributions of three key parameters statistically characterizing crustal magnetization in each of the 6000 regions: magnetization amplitude, magnetic layer thickness, and a power-law exponent. The resulting world map of magnetic layer thickness differs from existing Moho depth models but indicates that, statistically, there is no significant evidence of magnetic sources located below the Moho at the studied length scales. In the second step, the ensemble of regional magnetization models is used to generate a set of large-scale spherical harmonic models of the lithospheric magnetic field (degrees 1 to 50). This set allows us to quantify the extent to which the lithospheric field contaminates both the static and time-varying components of the core magnetic field. We find that this contamination is substantial between spherical harmonic degrees 12 and 15 for the static core field, and from degree 21 onward for the secular variation.</div></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"367 ","pages":"Article 107421"},"PeriodicalIF":1.9000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling the lithospheric magnetic field masked by the Earth’s main field by estimating the magnetization and magnetic crustal thickness using a statistical approach\",\"authors\":\"Erwan Thébault , Gauthier Hulot\",\"doi\":\"10.1016/j.pepi.2025.107421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Detailed mapping of Earth’s lithospheric magnetic field provides important insights into the composition, dynamics, and geological history of the crust. This field can be modeled using satellite and near-surface magnetic measurements. However, structures larger than approximately 2500 km in scale are obscured by the dominant magnetic signal generated by the Earth’s core. The superposition of core and crustal magnetic fields introduces ambiguities in both geodynamo and crustal magnetic source studies. Previous efforts to address this issue have included statistical estimates of upper and lower bounds on the long-wavelength components of the crustal field, as well as more deterministic predictions based on geophysical priors such as crustal magnetization and seismic Moho depth models. These approaches, however, have often produced contradictory results. In this study, we adopt a two-step strategy. The first step involves a series of regional spherical spectral analysis of the World Digital Magnetic Anomaly Grid (WDMAM2.2), without relying on any prior information from seismic or magnetization models. This approach, applied to the 5 km × 5 km WDMAM2.2 grid across 6000 regions uniformly distributed over the Earth’s surface, allows us to estimate the probability distributions of three key parameters statistically characterizing crustal magnetization in each of the 6000 regions: magnetization amplitude, magnetic layer thickness, and a power-law exponent. The resulting world map of magnetic layer thickness differs from existing Moho depth models but indicates that, statistically, there is no significant evidence of magnetic sources located below the Moho at the studied length scales. In the second step, the ensemble of regional magnetization models is used to generate a set of large-scale spherical harmonic models of the lithospheric magnetic field (degrees 1 to 50). This set allows us to quantify the extent to which the lithospheric field contaminates both the static and time-varying components of the core magnetic field. We find that this contamination is substantial between spherical harmonic degrees 12 and 15 for the static core field, and from degree 21 onward for the secular variation.</div></div>\",\"PeriodicalId\":54614,\"journal\":{\"name\":\"Physics of the Earth and Planetary Interiors\",\"volume\":\"367 \",\"pages\":\"Article 107421\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Earth and Planetary Interiors\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031920125001153\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Earth and Planetary Interiors","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031920125001153","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Unraveling the lithospheric magnetic field masked by the Earth’s main field by estimating the magnetization and magnetic crustal thickness using a statistical approach
Detailed mapping of Earth’s lithospheric magnetic field provides important insights into the composition, dynamics, and geological history of the crust. This field can be modeled using satellite and near-surface magnetic measurements. However, structures larger than approximately 2500 km in scale are obscured by the dominant magnetic signal generated by the Earth’s core. The superposition of core and crustal magnetic fields introduces ambiguities in both geodynamo and crustal magnetic source studies. Previous efforts to address this issue have included statistical estimates of upper and lower bounds on the long-wavelength components of the crustal field, as well as more deterministic predictions based on geophysical priors such as crustal magnetization and seismic Moho depth models. These approaches, however, have often produced contradictory results. In this study, we adopt a two-step strategy. The first step involves a series of regional spherical spectral analysis of the World Digital Magnetic Anomaly Grid (WDMAM2.2), without relying on any prior information from seismic or magnetization models. This approach, applied to the 5 km × 5 km WDMAM2.2 grid across 6000 regions uniformly distributed over the Earth’s surface, allows us to estimate the probability distributions of three key parameters statistically characterizing crustal magnetization in each of the 6000 regions: magnetization amplitude, magnetic layer thickness, and a power-law exponent. The resulting world map of magnetic layer thickness differs from existing Moho depth models but indicates that, statistically, there is no significant evidence of magnetic sources located below the Moho at the studied length scales. In the second step, the ensemble of regional magnetization models is used to generate a set of large-scale spherical harmonic models of the lithospheric magnetic field (degrees 1 to 50). This set allows us to quantify the extent to which the lithospheric field contaminates both the static and time-varying components of the core magnetic field. We find that this contamination is substantial between spherical harmonic degrees 12 and 15 for the static core field, and from degree 21 onward for the secular variation.
期刊介绍:
Launched in 1968 to fill the need for an international journal in the field of planetary physics, geodesy and geophysics, Physics of the Earth and Planetary Interiors has now grown to become important reading matter for all geophysicists. It is the only journal to be entirely devoted to the physical and chemical processes of planetary interiors.
Original research papers, review articles, short communications and book reviews are all published on a regular basis; and from time to time special issues of the journal are devoted to the publication of the proceedings of symposia and congresses which the editors feel will be of particular interest to the reader.