{"title":"双矩阵对策的正交初等相互作用","authors":"György Szabó , Balázs Király","doi":"10.1016/j.physa.2025.130920","DOIUrl":null,"url":null,"abstract":"<div><div>In symmetric matrix games, the interaction is defined through a single payoff matrix that can be decomposed into elementary interactions of four types representing games with self- and cross-dependent payoffs, coordination-type interactions, and rock–paper–scissors-like cyclic dominance. Here, this analysis is extended to a similar anatomy of bimatrix games given by two matrices. The respective self- and cross-dependent components describe extended versions of donation games expanding the range of social dilemmas. The most attractive classification utilizes the fact that games can be separated into the sum of a fraternal and a zero-sum part whose payoff matrices can then be further divided into symmetric and antisymmetric terms. This approach revealed two types of interaction not present in symmetric games: directed anticoordination components share some features with both partnership games and rock–paper–scissors-like cyclic dominance; the combinations of matching pennies components prevent the existence of a potential, which precludes detailed balance with the Boltzmann distribution under Glauber-type dynamics. In another departure from symmetric games, bimatrix games may admit a non-Hermitian potential matrix, which could possibly give rise to thermodynamic behaviors not found in classical spin models. Some curiosities of the directed anticoordination interaction are illustrated by simulations when the players are located on a square lattice.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"677 ","pages":"Article 130920"},"PeriodicalIF":3.1000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orthogonal elementary interactions for bimatrix games\",\"authors\":\"György Szabó , Balázs Király\",\"doi\":\"10.1016/j.physa.2025.130920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In symmetric matrix games, the interaction is defined through a single payoff matrix that can be decomposed into elementary interactions of four types representing games with self- and cross-dependent payoffs, coordination-type interactions, and rock–paper–scissors-like cyclic dominance. Here, this analysis is extended to a similar anatomy of bimatrix games given by two matrices. The respective self- and cross-dependent components describe extended versions of donation games expanding the range of social dilemmas. The most attractive classification utilizes the fact that games can be separated into the sum of a fraternal and a zero-sum part whose payoff matrices can then be further divided into symmetric and antisymmetric terms. This approach revealed two types of interaction not present in symmetric games: directed anticoordination components share some features with both partnership games and rock–paper–scissors-like cyclic dominance; the combinations of matching pennies components prevent the existence of a potential, which precludes detailed balance with the Boltzmann distribution under Glauber-type dynamics. In another departure from symmetric games, bimatrix games may admit a non-Hermitian potential matrix, which could possibly give rise to thermodynamic behaviors not found in classical spin models. Some curiosities of the directed anticoordination interaction are illustrated by simulations when the players are located on a square lattice.</div></div>\",\"PeriodicalId\":20152,\"journal\":{\"name\":\"Physica A: Statistical Mechanics and its Applications\",\"volume\":\"677 \",\"pages\":\"Article 130920\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica A: Statistical Mechanics and its Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378437125005722\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437125005722","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Orthogonal elementary interactions for bimatrix games
In symmetric matrix games, the interaction is defined through a single payoff matrix that can be decomposed into elementary interactions of four types representing games with self- and cross-dependent payoffs, coordination-type interactions, and rock–paper–scissors-like cyclic dominance. Here, this analysis is extended to a similar anatomy of bimatrix games given by two matrices. The respective self- and cross-dependent components describe extended versions of donation games expanding the range of social dilemmas. The most attractive classification utilizes the fact that games can be separated into the sum of a fraternal and a zero-sum part whose payoff matrices can then be further divided into symmetric and antisymmetric terms. This approach revealed two types of interaction not present in symmetric games: directed anticoordination components share some features with both partnership games and rock–paper–scissors-like cyclic dominance; the combinations of matching pennies components prevent the existence of a potential, which precludes detailed balance with the Boltzmann distribution under Glauber-type dynamics. In another departure from symmetric games, bimatrix games may admit a non-Hermitian potential matrix, which could possibly give rise to thermodynamic behaviors not found in classical spin models. Some curiosities of the directed anticoordination interaction are illustrated by simulations when the players are located on a square lattice.
期刊介绍:
Physica A: Statistical Mechanics and its Applications
Recognized by the European Physical Society
Physica A publishes research in the field of statistical mechanics and its applications.
Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents.
Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.