{"title":"k体玻色子随机矩阵系综中最低特征值的分布","authors":"N.D. Chavda , Priyanka Rao , V.K.B. Kota , Manan Vyas","doi":"10.1016/j.physa.2025.130874","DOIUrl":null,"url":null,"abstract":"<div><div>We present numerical investigations demonstrating the result that the distribution of the lowest eigenvalue of finite many-boson systems (say we have <span><math><mi>m</mi></math></span> number of bosons) with <span><math><mi>k</mi></math></span>-body interactions, modeled by Bosonic Embedded Gaussian Orthogonal [BEGOE(<span><math><mi>k</mi></math></span>)] and Unitary [BEGUE(<span><math><mi>k</mi></math></span>)] random matrix Ensembles of <span><math><mi>k</mi></math></span>-body interactions, exhibits a smooth transition from Gaussian like (for <span><math><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow></math></span>) to a modified Gumbel like (for intermediate values of <span><math><mi>k</mi></math></span>) to the well-known Tracy–Widom distribution (for <span><math><mrow><mi>k</mi><mo>=</mo><mi>m</mi></mrow></math></span>) form. We also provide ansatz for centroids and variances of the lowest eigenvalue distributions. In addition, we show that the distribution of normalized spacing between the lowest and next lowest eigenvalues exhibits a transition from Wigner’s surmise (for <span><math><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow></math></span>) to Poisson (for intermediate <span><math><mi>k</mi></math></span> values with <span><math><mrow><mi>k</mi><mo>≤</mo><mi>m</mi><mo>/</mo><mn>2</mn></mrow></math></span>) to Wigner’s surmise (starting from <span><math><mrow><mi>k</mi><mo>=</mo><mi>m</mi><mo>/</mo><mn>2</mn></mrow></math></span> to <span><math><mrow><mi>k</mi><mo>=</mo><mi>m</mi></mrow></math></span>) form. We analyze these transitions as a function of <span><math><mi>q</mi></math></span> parameter defining <span><math><mi>q</mi></math></span>-normal distribution for eigenvalue densities.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"677 ","pages":"Article 130874"},"PeriodicalIF":3.1000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distribution of lowest eigenvalue in k-body bosonic random matrix ensembles\",\"authors\":\"N.D. Chavda , Priyanka Rao , V.K.B. Kota , Manan Vyas\",\"doi\":\"10.1016/j.physa.2025.130874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present numerical investigations demonstrating the result that the distribution of the lowest eigenvalue of finite many-boson systems (say we have <span><math><mi>m</mi></math></span> number of bosons) with <span><math><mi>k</mi></math></span>-body interactions, modeled by Bosonic Embedded Gaussian Orthogonal [BEGOE(<span><math><mi>k</mi></math></span>)] and Unitary [BEGUE(<span><math><mi>k</mi></math></span>)] random matrix Ensembles of <span><math><mi>k</mi></math></span>-body interactions, exhibits a smooth transition from Gaussian like (for <span><math><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow></math></span>) to a modified Gumbel like (for intermediate values of <span><math><mi>k</mi></math></span>) to the well-known Tracy–Widom distribution (for <span><math><mrow><mi>k</mi><mo>=</mo><mi>m</mi></mrow></math></span>) form. We also provide ansatz for centroids and variances of the lowest eigenvalue distributions. In addition, we show that the distribution of normalized spacing between the lowest and next lowest eigenvalues exhibits a transition from Wigner’s surmise (for <span><math><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow></math></span>) to Poisson (for intermediate <span><math><mi>k</mi></math></span> values with <span><math><mrow><mi>k</mi><mo>≤</mo><mi>m</mi><mo>/</mo><mn>2</mn></mrow></math></span>) to Wigner’s surmise (starting from <span><math><mrow><mi>k</mi><mo>=</mo><mi>m</mi><mo>/</mo><mn>2</mn></mrow></math></span> to <span><math><mrow><mi>k</mi><mo>=</mo><mi>m</mi></mrow></math></span>) form. We analyze these transitions as a function of <span><math><mi>q</mi></math></span> parameter defining <span><math><mi>q</mi></math></span>-normal distribution for eigenvalue densities.</div></div>\",\"PeriodicalId\":20152,\"journal\":{\"name\":\"Physica A: Statistical Mechanics and its Applications\",\"volume\":\"677 \",\"pages\":\"Article 130874\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica A: Statistical Mechanics and its Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378437125005266\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437125005266","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Distribution of lowest eigenvalue in k-body bosonic random matrix ensembles
We present numerical investigations demonstrating the result that the distribution of the lowest eigenvalue of finite many-boson systems (say we have number of bosons) with -body interactions, modeled by Bosonic Embedded Gaussian Orthogonal [BEGOE()] and Unitary [BEGUE()] random matrix Ensembles of -body interactions, exhibits a smooth transition from Gaussian like (for ) to a modified Gumbel like (for intermediate values of ) to the well-known Tracy–Widom distribution (for ) form. We also provide ansatz for centroids and variances of the lowest eigenvalue distributions. In addition, we show that the distribution of normalized spacing between the lowest and next lowest eigenvalues exhibits a transition from Wigner’s surmise (for ) to Poisson (for intermediate values with ) to Wigner’s surmise (starting from to ) form. We analyze these transitions as a function of parameter defining -normal distribution for eigenvalue densities.
期刊介绍:
Physica A: Statistical Mechanics and its Applications
Recognized by the European Physical Society
Physica A publishes research in the field of statistical mechanics and its applications.
Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents.
Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.