k体玻色子随机矩阵系综中最低特征值的分布

IF 3.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
N.D. Chavda , Priyanka Rao , V.K.B. Kota , Manan Vyas
{"title":"k体玻色子随机矩阵系综中最低特征值的分布","authors":"N.D. Chavda ,&nbsp;Priyanka Rao ,&nbsp;V.K.B. Kota ,&nbsp;Manan Vyas","doi":"10.1016/j.physa.2025.130874","DOIUrl":null,"url":null,"abstract":"<div><div>We present numerical investigations demonstrating the result that the distribution of the lowest eigenvalue of finite many-boson systems (say we have <span><math><mi>m</mi></math></span> number of bosons) with <span><math><mi>k</mi></math></span>-body interactions, modeled by Bosonic Embedded Gaussian Orthogonal [BEGOE(<span><math><mi>k</mi></math></span>)] and Unitary [BEGUE(<span><math><mi>k</mi></math></span>)] random matrix Ensembles of <span><math><mi>k</mi></math></span>-body interactions, exhibits a smooth transition from Gaussian like (for <span><math><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow></math></span>) to a modified Gumbel like (for intermediate values of <span><math><mi>k</mi></math></span>) to the well-known Tracy–Widom distribution (for <span><math><mrow><mi>k</mi><mo>=</mo><mi>m</mi></mrow></math></span>) form. We also provide ansatz for centroids and variances of the lowest eigenvalue distributions. In addition, we show that the distribution of normalized spacing between the lowest and next lowest eigenvalues exhibits a transition from Wigner’s surmise (for <span><math><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow></math></span>) to Poisson (for intermediate <span><math><mi>k</mi></math></span> values with <span><math><mrow><mi>k</mi><mo>≤</mo><mi>m</mi><mo>/</mo><mn>2</mn></mrow></math></span>) to Wigner’s surmise (starting from <span><math><mrow><mi>k</mi><mo>=</mo><mi>m</mi><mo>/</mo><mn>2</mn></mrow></math></span> to <span><math><mrow><mi>k</mi><mo>=</mo><mi>m</mi></mrow></math></span>) form. We analyze these transitions as a function of <span><math><mi>q</mi></math></span> parameter defining <span><math><mi>q</mi></math></span>-normal distribution for eigenvalue densities.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"677 ","pages":"Article 130874"},"PeriodicalIF":3.1000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distribution of lowest eigenvalue in k-body bosonic random matrix ensembles\",\"authors\":\"N.D. Chavda ,&nbsp;Priyanka Rao ,&nbsp;V.K.B. Kota ,&nbsp;Manan Vyas\",\"doi\":\"10.1016/j.physa.2025.130874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present numerical investigations demonstrating the result that the distribution of the lowest eigenvalue of finite many-boson systems (say we have <span><math><mi>m</mi></math></span> number of bosons) with <span><math><mi>k</mi></math></span>-body interactions, modeled by Bosonic Embedded Gaussian Orthogonal [BEGOE(<span><math><mi>k</mi></math></span>)] and Unitary [BEGUE(<span><math><mi>k</mi></math></span>)] random matrix Ensembles of <span><math><mi>k</mi></math></span>-body interactions, exhibits a smooth transition from Gaussian like (for <span><math><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow></math></span>) to a modified Gumbel like (for intermediate values of <span><math><mi>k</mi></math></span>) to the well-known Tracy–Widom distribution (for <span><math><mrow><mi>k</mi><mo>=</mo><mi>m</mi></mrow></math></span>) form. We also provide ansatz for centroids and variances of the lowest eigenvalue distributions. In addition, we show that the distribution of normalized spacing between the lowest and next lowest eigenvalues exhibits a transition from Wigner’s surmise (for <span><math><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow></math></span>) to Poisson (for intermediate <span><math><mi>k</mi></math></span> values with <span><math><mrow><mi>k</mi><mo>≤</mo><mi>m</mi><mo>/</mo><mn>2</mn></mrow></math></span>) to Wigner’s surmise (starting from <span><math><mrow><mi>k</mi><mo>=</mo><mi>m</mi><mo>/</mo><mn>2</mn></mrow></math></span> to <span><math><mrow><mi>k</mi><mo>=</mo><mi>m</mi></mrow></math></span>) form. We analyze these transitions as a function of <span><math><mi>q</mi></math></span> parameter defining <span><math><mi>q</mi></math></span>-normal distribution for eigenvalue densities.</div></div>\",\"PeriodicalId\":20152,\"journal\":{\"name\":\"Physica A: Statistical Mechanics and its Applications\",\"volume\":\"677 \",\"pages\":\"Article 130874\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica A: Statistical Mechanics and its Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378437125005266\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437125005266","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了数值研究,证明了具有k体相互作用的有限多玻色子系统(假设我们有m个玻色子)的最低特征值分布的结果,由k体相互作用的玻色子嵌入高斯正交[BEGOE(k)]和统一[BEGUE(k)]随机矩阵系综建模,表现出从类高斯(对于k=1)到改进的类甘贝尔(对于k的中间值)到著名的Tracy-Widom分布(对于k=m)形式的平滑过渡。我们还提供了最低特征值分布的质心和方差的分析。此外,我们证明了最低和次最低特征值之间的归一化间距分布呈现出从Wigner猜测(对于k=1)到泊松(对于k≤m/2的中间k值)到Wigner猜测(从k=m/2开始到k=m)形式的过渡。我们将这些转换作为定义特征值密度的q参数的函数来分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distribution of lowest eigenvalue in k-body bosonic random matrix ensembles
We present numerical investigations demonstrating the result that the distribution of the lowest eigenvalue of finite many-boson systems (say we have m number of bosons) with k-body interactions, modeled by Bosonic Embedded Gaussian Orthogonal [BEGOE(k)] and Unitary [BEGUE(k)] random matrix Ensembles of k-body interactions, exhibits a smooth transition from Gaussian like (for k=1) to a modified Gumbel like (for intermediate values of k) to the well-known Tracy–Widom distribution (for k=m) form. We also provide ansatz for centroids and variances of the lowest eigenvalue distributions. In addition, we show that the distribution of normalized spacing between the lowest and next lowest eigenvalues exhibits a transition from Wigner’s surmise (for k=1) to Poisson (for intermediate k values with km/2) to Wigner’s surmise (starting from k=m/2 to k=m) form. We analyze these transitions as a function of q parameter defining q-normal distribution for eigenvalue densities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
9.10%
发文量
852
审稿时长
6.6 months
期刊介绍: Physica A: Statistical Mechanics and its Applications Recognized by the European Physical Society Physica A publishes research in the field of statistical mechanics and its applications. Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents. Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信