Waseem Akram, Muhayy Ud Din, Abdelhaleem Saad, Irfan Hussain
{"title":"AquaChat:一个llm引导的ROV框架,用于水产养殖网栏的自适应检测","authors":"Waseem Akram, Muhayy Ud Din, Abdelhaleem Saad, Irfan Hussain","doi":"10.1016/j.aquaeng.2025.102607","DOIUrl":null,"url":null,"abstract":"<div><div>Inspection of aquaculture net pens is essential for maintaining the structural integrity, biosecurity, and operational efficiency of fish farming systems. Traditional inspection approaches rely on pre-programmed missions or manual control, offering limited adaptability to dynamic underwater conditions and user-specific demands. In this study, we propose AquaChat, a novel Remotely Operated Vehicle (ROV) framework that integrates Large Language Models (LLMs) for instruction-driven, intelligent and adaptive net pen inspection. The system features a multi-layered architecture: (1) a high-level planning layer that interprets natural language user commands using an LLM to generate symbolic task plans; (2) a mid-level task manager that translates plans into ROV control sequences; and (3) a low-level motion control layer that executes navigation and inspection tasks with precision. Real-time feedback and event-triggered replanning enhance robustness in challenging aquaculture environments. The framework is validated through experiments in both simulated and controlled aquatic environments representative of aquaculture net pens. Results demonstrate improved task flexibility, inspection accuracy, and operational efficiency. AquaChat illustrates the potential of integrating language-based AI with marine robotics to enable intelligent, user-interactive inspection systems for sustainable aquaculture operations.</div></div>","PeriodicalId":8120,"journal":{"name":"Aquacultural Engineering","volume":"111 ","pages":"Article 102607"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AquaChat: An LLM-guided ROV framework for adaptive inspection of aquaculture net pens\",\"authors\":\"Waseem Akram, Muhayy Ud Din, Abdelhaleem Saad, Irfan Hussain\",\"doi\":\"10.1016/j.aquaeng.2025.102607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Inspection of aquaculture net pens is essential for maintaining the structural integrity, biosecurity, and operational efficiency of fish farming systems. Traditional inspection approaches rely on pre-programmed missions or manual control, offering limited adaptability to dynamic underwater conditions and user-specific demands. In this study, we propose AquaChat, a novel Remotely Operated Vehicle (ROV) framework that integrates Large Language Models (LLMs) for instruction-driven, intelligent and adaptive net pen inspection. The system features a multi-layered architecture: (1) a high-level planning layer that interprets natural language user commands using an LLM to generate symbolic task plans; (2) a mid-level task manager that translates plans into ROV control sequences; and (3) a low-level motion control layer that executes navigation and inspection tasks with precision. Real-time feedback and event-triggered replanning enhance robustness in challenging aquaculture environments. The framework is validated through experiments in both simulated and controlled aquatic environments representative of aquaculture net pens. Results demonstrate improved task flexibility, inspection accuracy, and operational efficiency. AquaChat illustrates the potential of integrating language-based AI with marine robotics to enable intelligent, user-interactive inspection systems for sustainable aquaculture operations.</div></div>\",\"PeriodicalId\":8120,\"journal\":{\"name\":\"Aquacultural Engineering\",\"volume\":\"111 \",\"pages\":\"Article 102607\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquacultural Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0144860925000962\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquacultural Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144860925000962","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
AquaChat: An LLM-guided ROV framework for adaptive inspection of aquaculture net pens
Inspection of aquaculture net pens is essential for maintaining the structural integrity, biosecurity, and operational efficiency of fish farming systems. Traditional inspection approaches rely on pre-programmed missions or manual control, offering limited adaptability to dynamic underwater conditions and user-specific demands. In this study, we propose AquaChat, a novel Remotely Operated Vehicle (ROV) framework that integrates Large Language Models (LLMs) for instruction-driven, intelligent and adaptive net pen inspection. The system features a multi-layered architecture: (1) a high-level planning layer that interprets natural language user commands using an LLM to generate symbolic task plans; (2) a mid-level task manager that translates plans into ROV control sequences; and (3) a low-level motion control layer that executes navigation and inspection tasks with precision. Real-time feedback and event-triggered replanning enhance robustness in challenging aquaculture environments. The framework is validated through experiments in both simulated and controlled aquatic environments representative of aquaculture net pens. Results demonstrate improved task flexibility, inspection accuracy, and operational efficiency. AquaChat illustrates the potential of integrating language-based AI with marine robotics to enable intelligent, user-interactive inspection systems for sustainable aquaculture operations.
期刊介绍:
Aquacultural Engineering is concerned with the design and development of effective aquacultural systems for marine and freshwater facilities. The journal aims to apply the knowledge gained from basic research which potentially can be translated into commercial operations.
Problems of scale-up and application of research data involve many parameters, both physical and biological, making it difficult to anticipate the interaction between the unit processes and the cultured animals. Aquacultural Engineering aims to develop this bioengineering interface for aquaculture and welcomes contributions in the following areas:
– Engineering and design of aquaculture facilities
– Engineering-based research studies
– Construction experience and techniques
– In-service experience, commissioning, operation
– Materials selection and their uses
– Quantification of biological data and constraints