基于多源图像融合和自校准的颅内血管手术三维仪器导航

IF 5.4
Linsen Zhang , Shiqi Liu , Xiaoliang Xie , Xiaohu Zhou , Zengguang Hou , Xinkai Qu , Wenzheng Han , Meng Song , Xiyao Ma , Haining Zhao
{"title":"基于多源图像融合和自校准的颅内血管手术三维仪器导航","authors":"Linsen Zhang ,&nbsp;Shiqi Liu ,&nbsp;Xiaoliang Xie ,&nbsp;Xiaohu Zhou ,&nbsp;Zengguang Hou ,&nbsp;Xinkai Qu ,&nbsp;Wenzheng Han ,&nbsp;Meng Song ,&nbsp;Xiyao Ma ,&nbsp;Haining Zhao","doi":"10.1016/j.birob.2025.100233","DOIUrl":null,"url":null,"abstract":"<div><div>In cerebrovascular interventional surgery, spatial position prediction navigation (SPPN) provides 3D spatial information of the vascular lumen, reducing the spatial dimension loss from digital subtraction angiography (DSA) and improving surgical precision. However, it is limited in its adaptability to complex vascular environments and prone to error accumulation. To address these issues, we propose spatial position prediction-based multimodal navigation (SPPMN), integrating minimal intraoperative X-ray images to enhance SPPN accuracy. In the first phase, a feature-weighted dynamic time warping (FDTW)-based branch matching algorithm is introduced for 3D topological positioning under non-registered conditions, with a dynamic location repositioning module for real-time corrections. In the second phase, an occlusion correction module, based on the elastic potential energy of the instrument tip, dynamically adjusts the tip’s angle to achieve low-projection occlusion control. Experimental validation using a high-precision electromagnetic tracking system (EMTS) on a 3D vascular model shows that the proposed method achieves an average 3D positioning accuracy of 9.36 mm in intracranial vascular regions, with a 78% reduction in radiation exposure, significantly enhancing both precision and safety in interventional surgeries.</div></div>","PeriodicalId":100184,"journal":{"name":"Biomimetic Intelligence and Robotics","volume":"5 3","pages":"Article 100233"},"PeriodicalIF":5.4000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel 3D instrument navigation in intracranial vascular surgery with multi-source image fusion and self-calibration\",\"authors\":\"Linsen Zhang ,&nbsp;Shiqi Liu ,&nbsp;Xiaoliang Xie ,&nbsp;Xiaohu Zhou ,&nbsp;Zengguang Hou ,&nbsp;Xinkai Qu ,&nbsp;Wenzheng Han ,&nbsp;Meng Song ,&nbsp;Xiyao Ma ,&nbsp;Haining Zhao\",\"doi\":\"10.1016/j.birob.2025.100233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In cerebrovascular interventional surgery, spatial position prediction navigation (SPPN) provides 3D spatial information of the vascular lumen, reducing the spatial dimension loss from digital subtraction angiography (DSA) and improving surgical precision. However, it is limited in its adaptability to complex vascular environments and prone to error accumulation. To address these issues, we propose spatial position prediction-based multimodal navigation (SPPMN), integrating minimal intraoperative X-ray images to enhance SPPN accuracy. In the first phase, a feature-weighted dynamic time warping (FDTW)-based branch matching algorithm is introduced for 3D topological positioning under non-registered conditions, with a dynamic location repositioning module for real-time corrections. In the second phase, an occlusion correction module, based on the elastic potential energy of the instrument tip, dynamically adjusts the tip’s angle to achieve low-projection occlusion control. Experimental validation using a high-precision electromagnetic tracking system (EMTS) on a 3D vascular model shows that the proposed method achieves an average 3D positioning accuracy of 9.36 mm in intracranial vascular regions, with a 78% reduction in radiation exposure, significantly enhancing both precision and safety in interventional surgeries.</div></div>\",\"PeriodicalId\":100184,\"journal\":{\"name\":\"Biomimetic Intelligence and Robotics\",\"volume\":\"5 3\",\"pages\":\"Article 100233\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetic Intelligence and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667379725000245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetic Intelligence and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667379725000245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在脑血管介入手术中,空间位置预测导航(SPPN)提供血管腔的三维空间信息,减少数字减影血管造影(DSA)带来的空间维度损失,提高手术精度。但其对复杂血管环境的适应能力有限,容易产生误差积累。为了解决这些问题,我们提出了基于空间位置预测的多模式导航(SPPMN),结合最小的术中x线图像来提高SPPN的准确性。在第一阶段,引入了一种基于特征加权动态时间翘曲(FDTW)的分支匹配算法,用于非配准条件下的三维拓扑定位,并采用动态位置重定位模块进行实时校正。第二阶段,遮挡校正模块基于仪器尖端的弹性势能,动态调整仪器尖端的角度,实现低投影遮挡控制。高精度电磁跟踪系统(EMTS)在三维血管模型上的实验验证表明,该方法在颅内血管区域的平均三维定位精度为9.36 mm,辐射暴露减少78%,显著提高了介入手术的精度和安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel 3D instrument navigation in intracranial vascular surgery with multi-source image fusion and self-calibration
In cerebrovascular interventional surgery, spatial position prediction navigation (SPPN) provides 3D spatial information of the vascular lumen, reducing the spatial dimension loss from digital subtraction angiography (DSA) and improving surgical precision. However, it is limited in its adaptability to complex vascular environments and prone to error accumulation. To address these issues, we propose spatial position prediction-based multimodal navigation (SPPMN), integrating minimal intraoperative X-ray images to enhance SPPN accuracy. In the first phase, a feature-weighted dynamic time warping (FDTW)-based branch matching algorithm is introduced for 3D topological positioning under non-registered conditions, with a dynamic location repositioning module for real-time corrections. In the second phase, an occlusion correction module, based on the elastic potential energy of the instrument tip, dynamically adjusts the tip’s angle to achieve low-projection occlusion control. Experimental validation using a high-precision electromagnetic tracking system (EMTS) on a 3D vascular model shows that the proposed method achieves an average 3D positioning accuracy of 9.36 mm in intracranial vascular regions, with a 78% reduction in radiation exposure, significantly enhancing both precision and safety in interventional surgeries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信