{"title":"FanNet:用于学习密集映射的网格卷积算子","authors":"Güneş Sucu, Sinan Kalkan, Yusuf Sahillioğlu","doi":"10.1016/j.cag.2025.104320","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we introduce a fast, simple and novel mesh convolution operator for learning dense shape correspondences. Instead of calculating weights between nodes, we explicitly aggregate node features by serializing neighboring vertices in a fan-shaped order. Thereafter, we use a fully connected layer to encode vertex features combined with the local neighborhood information. Finally, we feed the resulting features into the multi-resolution functional maps module to acquire the final maps. We demonstrate that our method works well in both supervised and unsupervised settings, and can be applied to isometric shapes with arbitrary triangulation and resolution. We evaluate the proposed method on two widely-used benchmark datasets, FAUST and SCAPE. Our results show that FanNet runs significantly faster and provides on-par or better performance than the related state-of-the-art shape correspondence methods.</div></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"132 ","pages":"Article 104320"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FanNet: A mesh convolution operator for learning dense maps\",\"authors\":\"Güneş Sucu, Sinan Kalkan, Yusuf Sahillioğlu\",\"doi\":\"10.1016/j.cag.2025.104320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we introduce a fast, simple and novel mesh convolution operator for learning dense shape correspondences. Instead of calculating weights between nodes, we explicitly aggregate node features by serializing neighboring vertices in a fan-shaped order. Thereafter, we use a fully connected layer to encode vertex features combined with the local neighborhood information. Finally, we feed the resulting features into the multi-resolution functional maps module to acquire the final maps. We demonstrate that our method works well in both supervised and unsupervised settings, and can be applied to isometric shapes with arbitrary triangulation and resolution. We evaluate the proposed method on two widely-used benchmark datasets, FAUST and SCAPE. Our results show that FanNet runs significantly faster and provides on-par or better performance than the related state-of-the-art shape correspondence methods.</div></div>\",\"PeriodicalId\":50628,\"journal\":{\"name\":\"Computers & Graphics-Uk\",\"volume\":\"132 \",\"pages\":\"Article 104320\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Graphics-Uk\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S009784932500161X\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009784932500161X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
FanNet: A mesh convolution operator for learning dense maps
In this paper, we introduce a fast, simple and novel mesh convolution operator for learning dense shape correspondences. Instead of calculating weights between nodes, we explicitly aggregate node features by serializing neighboring vertices in a fan-shaped order. Thereafter, we use a fully connected layer to encode vertex features combined with the local neighborhood information. Finally, we feed the resulting features into the multi-resolution functional maps module to acquire the final maps. We demonstrate that our method works well in both supervised and unsupervised settings, and can be applied to isometric shapes with arbitrary triangulation and resolution. We evaluate the proposed method on two widely-used benchmark datasets, FAUST and SCAPE. Our results show that FanNet runs significantly faster and provides on-par or better performance than the related state-of-the-art shape correspondence methods.
期刊介绍:
Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on:
1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains.
2. State-of-the-art papers on late-breaking, cutting-edge research on CG.
3. Information on innovative uses of graphics principles and technologies.
4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.