调色板:用于比较分类可视化的基于共显着性的着色

IF 2.8 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Kecheng Lu , Xubin Chai , Yi Hou , Yunhai Wang
{"title":"调色板:用于比较分类可视化的基于共显着性的着色","authors":"Kecheng Lu ,&nbsp;Xubin Chai ,&nbsp;Yi Hou ,&nbsp;Yunhai Wang","doi":"10.1016/j.cag.2025.104379","DOIUrl":null,"url":null,"abstract":"<div><div>Visual comparison within juxtaposed views is an essential part of interactive data analysis. In this paper, we propose a co-saliency model to characterize the most co-salient features among juxtaposed labeled data visualizations while maintaining class discrimination in the individual visualizations. Based on this model, we present a comparison-driven color design framework, enabling the automatic generation of colors that maximizes co-saliency among juxtaposed visualizations for better identifying items with the largest magnitude change between two data sets. We conducted two online controlled experiments to compare our colorizations of bar charts and scatterplots with results produced by existing single view-based color design methods. We further present an interactive system and conduct a case study to demonstrate the usefulness of our method for comparing juxtaposed line charts. The results show that our approach is able to generate high quality color palettes in support of visual comparisons of juxtaposed categorical visualizations.</div></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"132 ","pages":"Article 104379"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ℂ3-palette: Co-saliency based colorization for comparing categorical visualizations\",\"authors\":\"Kecheng Lu ,&nbsp;Xubin Chai ,&nbsp;Yi Hou ,&nbsp;Yunhai Wang\",\"doi\":\"10.1016/j.cag.2025.104379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Visual comparison within juxtaposed views is an essential part of interactive data analysis. In this paper, we propose a co-saliency model to characterize the most co-salient features among juxtaposed labeled data visualizations while maintaining class discrimination in the individual visualizations. Based on this model, we present a comparison-driven color design framework, enabling the automatic generation of colors that maximizes co-saliency among juxtaposed visualizations for better identifying items with the largest magnitude change between two data sets. We conducted two online controlled experiments to compare our colorizations of bar charts and scatterplots with results produced by existing single view-based color design methods. We further present an interactive system and conduct a case study to demonstrate the usefulness of our method for comparing juxtaposed line charts. The results show that our approach is able to generate high quality color palettes in support of visual comparisons of juxtaposed categorical visualizations.</div></div>\",\"PeriodicalId\":50628,\"journal\":{\"name\":\"Computers & Graphics-Uk\",\"volume\":\"132 \",\"pages\":\"Article 104379\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Graphics-Uk\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097849325002201\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849325002201","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

并置视图中的视觉比较是交互式数据分析的重要组成部分。在本文中,我们提出了一个共同显著性模型来表征并置标记数据可视化中最共同显著的特征,同时保持个体可视化中的阶级歧视。基于这个模型,我们提出了一个比较驱动的颜色设计框架,使颜色的自动生成最大化并列可视化之间的共显性,以便更好地识别两个数据集之间变化幅度最大的项目。我们进行了两个在线对照实验,将我们的条形图和散点图的着色与现有的基于单一视图的颜色设计方法产生的结果进行比较。我们进一步提出了一个交互式系统,并进行了一个案例研究,以证明我们的方法对比较并列线图的有用性。结果表明,我们的方法能够生成高质量的调色板,以支持并置分类可视化的视觉比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ℂ3-palette: Co-saliency based colorization for comparing categorical visualizations
Visual comparison within juxtaposed views is an essential part of interactive data analysis. In this paper, we propose a co-saliency model to characterize the most co-salient features among juxtaposed labeled data visualizations while maintaining class discrimination in the individual visualizations. Based on this model, we present a comparison-driven color design framework, enabling the automatic generation of colors that maximizes co-saliency among juxtaposed visualizations for better identifying items with the largest magnitude change between two data sets. We conducted two online controlled experiments to compare our colorizations of bar charts and scatterplots with results produced by existing single view-based color design methods. We further present an interactive system and conduct a case study to demonstrate the usefulness of our method for comparing juxtaposed line charts. The results show that our approach is able to generate high quality color palettes in support of visual comparisons of juxtaposed categorical visualizations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Graphics-Uk
Computers & Graphics-Uk 工程技术-计算机:软件工程
CiteScore
5.30
自引率
12.00%
发文量
173
审稿时长
38 days
期刊介绍: Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on: 1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains. 2. State-of-the-art papers on late-breaking, cutting-edge research on CG. 3. Information on innovative uses of graphics principles and technologies. 4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信