Asiah Hatcher , Gary Brierly , Cedryck Vaquette , Reuben Staples , Omar Breik , Sašo Ivanovski , Martin D. Batstone , Danilo Carluccio
{"title":"用于骨再生的生物可吸收TPMS聚合物支架","authors":"Asiah Hatcher , Gary Brierly , Cedryck Vaquette , Reuben Staples , Omar Breik , Sašo Ivanovski , Martin D. Batstone , Danilo Carluccio","doi":"10.1016/j.bprint.2025.e00433","DOIUrl":null,"url":null,"abstract":"<div><div>Bone tissue engineering (BTE) addresses limitations of traditional bone grafts by using synthetic scaffolds with or without growth factors to regenerate critical-sized defects. New generation scaffolds are produced with a biomimetic approach to simulate bone structure and support cellular functions. This review explores the potential of Triply Periodic Minimal Surface (TPMS) scaffolds made from bioresorbable polymers for BTE applications. TPMS scaffolds are designed to mimic the complex geometry of natural bone, offering a balance between mechanical strength and porosity that promotes nutrient flow and cell proliferation. This review discusses the limitations of traditional scaffold materials and fabrication methods, emphasising the advantages of additive manufacturing (AM) technologies in creating high-resolution, customisable scaffolds. The paper delves into the design principles, material choices, and clinical applications of TPMS scaffolds, with a focus on their mechanical and biological performance. It also addresses the challenges in manufacturing high-fidelity TPMS scaffolds and the need for further research to optimise their design for clinical use. The review concludes by outlining future directions for the development of TPMS scaffolds, aiming to improve their efficacy in bone regeneration and their potential for clinical translation.</div></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":"50 ","pages":"Article e00433"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioresorbable TPMS polymeric scaffolds for bone regeneration\",\"authors\":\"Asiah Hatcher , Gary Brierly , Cedryck Vaquette , Reuben Staples , Omar Breik , Sašo Ivanovski , Martin D. Batstone , Danilo Carluccio\",\"doi\":\"10.1016/j.bprint.2025.e00433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bone tissue engineering (BTE) addresses limitations of traditional bone grafts by using synthetic scaffolds with or without growth factors to regenerate critical-sized defects. New generation scaffolds are produced with a biomimetic approach to simulate bone structure and support cellular functions. This review explores the potential of Triply Periodic Minimal Surface (TPMS) scaffolds made from bioresorbable polymers for BTE applications. TPMS scaffolds are designed to mimic the complex geometry of natural bone, offering a balance between mechanical strength and porosity that promotes nutrient flow and cell proliferation. This review discusses the limitations of traditional scaffold materials and fabrication methods, emphasising the advantages of additive manufacturing (AM) technologies in creating high-resolution, customisable scaffolds. The paper delves into the design principles, material choices, and clinical applications of TPMS scaffolds, with a focus on their mechanical and biological performance. It also addresses the challenges in manufacturing high-fidelity TPMS scaffolds and the need for further research to optimise their design for clinical use. The review concludes by outlining future directions for the development of TPMS scaffolds, aiming to improve their efficacy in bone regeneration and their potential for clinical translation.</div></div>\",\"PeriodicalId\":37770,\"journal\":{\"name\":\"Bioprinting\",\"volume\":\"50 \",\"pages\":\"Article e00433\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprinting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405886625000491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprinting","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405886625000491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Bioresorbable TPMS polymeric scaffolds for bone regeneration
Bone tissue engineering (BTE) addresses limitations of traditional bone grafts by using synthetic scaffolds with or without growth factors to regenerate critical-sized defects. New generation scaffolds are produced with a biomimetic approach to simulate bone structure and support cellular functions. This review explores the potential of Triply Periodic Minimal Surface (TPMS) scaffolds made from bioresorbable polymers for BTE applications. TPMS scaffolds are designed to mimic the complex geometry of natural bone, offering a balance between mechanical strength and porosity that promotes nutrient flow and cell proliferation. This review discusses the limitations of traditional scaffold materials and fabrication methods, emphasising the advantages of additive manufacturing (AM) technologies in creating high-resolution, customisable scaffolds. The paper delves into the design principles, material choices, and clinical applications of TPMS scaffolds, with a focus on their mechanical and biological performance. It also addresses the challenges in manufacturing high-fidelity TPMS scaffolds and the need for further research to optimise their design for clinical use. The review concludes by outlining future directions for the development of TPMS scaffolds, aiming to improve their efficacy in bone regeneration and their potential for clinical translation.
期刊介绍:
Bioprinting is a broad-spectrum, multidisciplinary journal that covers all aspects of 3D fabrication technology involving biological tissues, organs and cells for medical and biotechnology applications. Topics covered include nanomaterials, biomaterials, scaffolds, 3D printing technology, imaging and CAD/CAM software and hardware, post-printing bioreactor maturation, cell and biological factor patterning, biofabrication, tissue engineering and other applications of 3D bioprinting technology. Bioprinting publishes research reports describing novel results with high clinical significance in all areas of 3D bioprinting research. Bioprinting issues contain a wide variety of review and analysis articles covering topics relevant to 3D bioprinting ranging from basic biological, material and technical advances to pre-clinical and clinical applications of 3D bioprinting.