数据驱动的增强粗糙接触力学:局部接触跨长度尺度间隙分布的PINN估计

IF 6.1 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Yunong Zhou , Hengxu Song
{"title":"数据驱动的增强粗糙接触力学:局部接触跨长度尺度间隙分布的PINN估计","authors":"Yunong Zhou ,&nbsp;Hengxu Song","doi":"10.1016/j.triboint.2025.111100","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we employ Green’s function molecular dynamics (GFMD) to simulate non-adhesive elastic contact between a half-space and a randomly rough counterface in (1+1) dimensions, obtaining gap distributions across varying length scales and Hurst exponents. Using the GFMD-generated dataset and incorporating the convection–diffusion equation form (derived in prior and current work) as a physical constraint, we predict gap distributions via Physics-Informed Neural Network (PINN). Results demonstrate that under partial contact conditions—where analytical solutions are unavailable—PINN predictions assuming drift and diffusion coefficients scale with length exhibit high agreement with GFMD. Furthermore, PINN successfully predicts gap distributions and relative contact areas at larger scales using small-scale training data, closely matching GFMD benchmarks. This establishes PINN as an effective tool for rough surface contact problems, particularly when analytical solutions are absent or computational models are prohibitively expensive.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"214 ","pages":"Article 111100"},"PeriodicalIF":6.1000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven enhanced rough contact mechanics: PINN estimation of gap distribution across length scales for partial contacts\",\"authors\":\"Yunong Zhou ,&nbsp;Hengxu Song\",\"doi\":\"10.1016/j.triboint.2025.111100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we employ Green’s function molecular dynamics (GFMD) to simulate non-adhesive elastic contact between a half-space and a randomly rough counterface in (1+1) dimensions, obtaining gap distributions across varying length scales and Hurst exponents. Using the GFMD-generated dataset and incorporating the convection–diffusion equation form (derived in prior and current work) as a physical constraint, we predict gap distributions via Physics-Informed Neural Network (PINN). Results demonstrate that under partial contact conditions—where analytical solutions are unavailable—PINN predictions assuming drift and diffusion coefficients scale with length exhibit high agreement with GFMD. Furthermore, PINN successfully predicts gap distributions and relative contact areas at larger scales using small-scale training data, closely matching GFMD benchmarks. This establishes PINN as an effective tool for rough surface contact problems, particularly when analytical solutions are absent or computational models are prohibitively expensive.</div></div>\",\"PeriodicalId\":23238,\"journal\":{\"name\":\"Tribology International\",\"volume\":\"214 \",\"pages\":\"Article 111100\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301679X2500595X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology International","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301679X2500595X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们采用格林函数分子动力学(GFMD)模拟了半空间和随机粗糙表面在(1+1)维度上的非粘性弹性接触,获得了不同长度尺度和Hurst指数的间隙分布。利用gfmd生成的数据集,并结合对流扩散方程形式(在先前和当前的工作中导出)作为物理约束,我们通过物理信息神经网络(PINN)预测间隙分布。结果表明,在部分接触条件下(解析解不可用),假设漂移和扩散系数随长度标度的pinn预测与GFMD高度一致。此外,使用小规模训练数据,PINN成功地预测了更大尺度上的间隙分布和相对接触区域,与GFMD基准非常匹配。这确立了PINN作为粗糙表面接触问题的有效工具,特别是在缺乏解析解或计算模型过于昂贵的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Data-driven enhanced rough contact mechanics: PINN estimation of gap distribution across length scales for partial contacts

Data-driven enhanced rough contact mechanics: PINN estimation of gap distribution across length scales for partial contacts
In this study, we employ Green’s function molecular dynamics (GFMD) to simulate non-adhesive elastic contact between a half-space and a randomly rough counterface in (1+1) dimensions, obtaining gap distributions across varying length scales and Hurst exponents. Using the GFMD-generated dataset and incorporating the convection–diffusion equation form (derived in prior and current work) as a physical constraint, we predict gap distributions via Physics-Informed Neural Network (PINN). Results demonstrate that under partial contact conditions—where analytical solutions are unavailable—PINN predictions assuming drift and diffusion coefficients scale with length exhibit high agreement with GFMD. Furthermore, PINN successfully predicts gap distributions and relative contact areas at larger scales using small-scale training data, closely matching GFMD benchmarks. This establishes PINN as an effective tool for rough surface contact problems, particularly when analytical solutions are absent or computational models are prohibitively expensive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tribology International
Tribology International 工程技术-工程:机械
CiteScore
10.10
自引率
16.10%
发文量
627
审稿时长
35 days
期刊介绍: Tribology is the science of rubbing surfaces and contributes to every facet of our everyday life, from live cell friction to engine lubrication and seismology. As such tribology is truly multidisciplinary and this extraordinary breadth of scientific interest is reflected in the scope of Tribology International. Tribology International seeks to publish original research papers of the highest scientific quality to provide an archival resource for scientists from all backgrounds. Written contributions are invited reporting experimental and modelling studies both in established areas of tribology and emerging fields. Scientific topics include the physics or chemistry of tribo-surfaces, bio-tribology, surface engineering and materials, contact mechanics, nano-tribology, lubricants and hydrodynamic lubrication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信