硼改性超马氏体不锈钢的氢脆

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ACS Omega Pub Date : 2025-08-11 DOI:10.1021/acsomega.5c02404
Arthur de Bribean Guerra, Daniel Brito Bertoldi, Guilherme Zepon, Paulo Sérgio Carvalho Pereira da Silva, Tomaz Toshimi Ishikawa, Guilherme Yuuki Koga* and Claudemiro Bolfarini, 
{"title":"硼改性超马氏体不锈钢的氢脆","authors":"Arthur de Bribean Guerra,&nbsp;Daniel Brito Bertoldi,&nbsp;Guilherme Zepon,&nbsp;Paulo Sérgio Carvalho Pereira da Silva,&nbsp;Tomaz Toshimi Ishikawa,&nbsp;Guilherme Yuuki Koga* and Claudemiro Bolfarini,&nbsp;","doi":"10.1021/acsomega.5c02404","DOIUrl":null,"url":null,"abstract":"<p >Supermartensitic stainless steels (SMSS) reinforced with a percolated boride network offer exceptional corrosion and wear resistance, making them well-suited for oil and gas applications. However, hydrogen embrittlement (HE) poses significant challenges in offshore environments. This study examines HE in SMSS with boron additions ranging from 0.3 to 0.7 wt %. Samples were subjected to hydrogen charging at −1.3 VSCE, 43 mA/cm<sup>2</sup> for 168 h in a 3.5 wt % NaCl solution, followed by slow strain rate tensile testing. While boron additions improved tensile strength, they severely reduced ductility. After hydrogen charging, mechanical degradation intensified, with SMSS-0.7%B experiencing &gt;55% reduction in tensile strength and elongation. All boron-rich alloys displayed brittle intergranular fractures caused by M<sub>2</sub>B borides at the grain boundaries. HE impacted both the martensitic matrices and borides, with fractures initiating in boride-rich regions and propagating via secondary cracks. These results underscore a synergistic embrittlement mechanism and emphasize the importance of optimizing microstructures to enhance hydrogen resistance in boron-reinforced SMSS.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 33","pages":"37236–37241"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsomega.5c02404","citationCount":"0","resultStr":"{\"title\":\"Hydrogen Embrittlement of Boron-Modified Supermartensitic Stainless Steel\",\"authors\":\"Arthur de Bribean Guerra,&nbsp;Daniel Brito Bertoldi,&nbsp;Guilherme Zepon,&nbsp;Paulo Sérgio Carvalho Pereira da Silva,&nbsp;Tomaz Toshimi Ishikawa,&nbsp;Guilherme Yuuki Koga* and Claudemiro Bolfarini,&nbsp;\",\"doi\":\"10.1021/acsomega.5c02404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Supermartensitic stainless steels (SMSS) reinforced with a percolated boride network offer exceptional corrosion and wear resistance, making them well-suited for oil and gas applications. However, hydrogen embrittlement (HE) poses significant challenges in offshore environments. This study examines HE in SMSS with boron additions ranging from 0.3 to 0.7 wt %. Samples were subjected to hydrogen charging at −1.3 VSCE, 43 mA/cm<sup>2</sup> for 168 h in a 3.5 wt % NaCl solution, followed by slow strain rate tensile testing. While boron additions improved tensile strength, they severely reduced ductility. After hydrogen charging, mechanical degradation intensified, with SMSS-0.7%B experiencing &gt;55% reduction in tensile strength and elongation. All boron-rich alloys displayed brittle intergranular fractures caused by M<sub>2</sub>B borides at the grain boundaries. HE impacted both the martensitic matrices and borides, with fractures initiating in boride-rich regions and propagating via secondary cracks. These results underscore a synergistic embrittlement mechanism and emphasize the importance of optimizing microstructures to enhance hydrogen resistance in boron-reinforced SMSS.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 33\",\"pages\":\"37236–37241\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsomega.5c02404\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.5c02404\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.5c02404","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

超马氏体不锈钢(SMSS)通过渗滤硼化物网络增强,具有优异的耐腐蚀性和耐磨性,非常适合油气应用。然而,在海上环境中,氢脆(HE)带来了重大挑战。本研究考察了硼添加量为0.3 ~ 0.7 wt %的SMSS中的HE。样品在3.5 wt % NaCl溶液中以−1.3 VSCE, 43 mA/cm2充氢168 h,然后进行慢应变速率拉伸测试。虽然添加硼提高了拉伸强度,但却严重降低了延展性。充氢后,机械降解加剧,SMSS-0.7%B的抗拉强度和伸长率下降了55%。所有富硼合金在晶界处均表现出由M2B硼化物引起的脆性晶间断口。HE对马氏体基体和硼化物均有影响,断口在富含硼化物的区域开始,并通过二次裂纹扩展。这些结果强调了协同脆化机制,并强调了优化微观结构以提高硼增强SMSS抗氢性能的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrogen Embrittlement of Boron-Modified Supermartensitic Stainless Steel

Supermartensitic stainless steels (SMSS) reinforced with a percolated boride network offer exceptional corrosion and wear resistance, making them well-suited for oil and gas applications. However, hydrogen embrittlement (HE) poses significant challenges in offshore environments. This study examines HE in SMSS with boron additions ranging from 0.3 to 0.7 wt %. Samples were subjected to hydrogen charging at −1.3 VSCE, 43 mA/cm2 for 168 h in a 3.5 wt % NaCl solution, followed by slow strain rate tensile testing. While boron additions improved tensile strength, they severely reduced ductility. After hydrogen charging, mechanical degradation intensified, with SMSS-0.7%B experiencing >55% reduction in tensile strength and elongation. All boron-rich alloys displayed brittle intergranular fractures caused by M2B borides at the grain boundaries. HE impacted both the martensitic matrices and borides, with fractures initiating in boride-rich regions and propagating via secondary cracks. These results underscore a synergistic embrittlement mechanism and emphasize the importance of optimizing microstructures to enhance hydrogen resistance in boron-reinforced SMSS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信