溶液处理氧化铟和纳米压印转移技术实现高灵敏度isfet

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yu-Wu Wang*, Kaushlendra Agrahari, Jiann-Heng Chen*, Zih-Wei Ye, Wen-Ting Wang, Hsuan-Jui Ou, Chun-Ying Huang and Sun-Zen Chen, 
{"title":"溶液处理氧化铟和纳米压印转移技术实现高灵敏度isfet","authors":"Yu-Wu Wang*,&nbsp;Kaushlendra Agrahari,&nbsp;Jiann-Heng Chen*,&nbsp;Zih-Wei Ye,&nbsp;Wen-Ting Wang,&nbsp;Hsuan-Jui Ou,&nbsp;Chun-Ying Huang and Sun-Zen Chen,&nbsp;","doi":"10.1021/acsaelm.5c00946","DOIUrl":null,"url":null,"abstract":"<p >This study presents a facile approach for fabricating high-performance indium oxide (In<sub>2</sub>O<sub>3</sub>) nanosheet thin-film transistors (TFTs) by using a combination of solution processing and nanoimprint transfer techniques. For the first time, nanostructured In<sub>2</sub>O<sub>3</sub>─featuring nanowire and honeycomb patterns with line widths as narrow as ∼158 and ∼89 nm, respectively─was successfully realized via a sol–gel nanoimprint strategy. The resulting nanosheet TFTs demonstrated outstanding electrical characteristics, including sharp output current profiles, a high ON/OFF current ratio, and enhanced field-effect mobility. By exploiting the advantages of nanoscale patterning and capacitive coupling in double-gate structures, the study further introduces ultrasensitive In<sub>2</sub>O<sub>3</sub>-based ion-sensitive field-effect transistors (ISFETs) for pH sensing, achieving a remarkable sensitivity of approximately −84.1 mV/pH. These findings not only highlight the potential of scalable nanofabrication techniques for oxide electronics but also open exciting opportunities for next-generation biomedical sensors and wearable electronic systems.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 16","pages":"7631–7639"},"PeriodicalIF":4.7000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Sensitivity ISFETs Enabled by Solution-Processed Indium Oxide and Nanoimprint Transferring Techniques\",\"authors\":\"Yu-Wu Wang*,&nbsp;Kaushlendra Agrahari,&nbsp;Jiann-Heng Chen*,&nbsp;Zih-Wei Ye,&nbsp;Wen-Ting Wang,&nbsp;Hsuan-Jui Ou,&nbsp;Chun-Ying Huang and Sun-Zen Chen,&nbsp;\",\"doi\":\"10.1021/acsaelm.5c00946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study presents a facile approach for fabricating high-performance indium oxide (In<sub>2</sub>O<sub>3</sub>) nanosheet thin-film transistors (TFTs) by using a combination of solution processing and nanoimprint transfer techniques. For the first time, nanostructured In<sub>2</sub>O<sub>3</sub>─featuring nanowire and honeycomb patterns with line widths as narrow as ∼158 and ∼89 nm, respectively─was successfully realized via a sol–gel nanoimprint strategy. The resulting nanosheet TFTs demonstrated outstanding electrical characteristics, including sharp output current profiles, a high ON/OFF current ratio, and enhanced field-effect mobility. By exploiting the advantages of nanoscale patterning and capacitive coupling in double-gate structures, the study further introduces ultrasensitive In<sub>2</sub>O<sub>3</sub>-based ion-sensitive field-effect transistors (ISFETs) for pH sensing, achieving a remarkable sensitivity of approximately −84.1 mV/pH. These findings not only highlight the potential of scalable nanofabrication techniques for oxide electronics but also open exciting opportunities for next-generation biomedical sensors and wearable electronic systems.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"7 16\",\"pages\":\"7631–7639\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaelm.5c00946\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.5c00946","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种简便的方法,通过结合溶液处理和纳米压印转移技术来制造高性能氧化铟(In2O3)纳米片薄膜晶体管(TFTs)。首次通过溶胶-凝胶纳米压印策略成功地实现了纳米结构的In2O3──线宽分别为~ 158 nm和~ 89 nm的纳米线和蜂窝状图案。由此产生的纳米片TFTs具有出色的电特性,包括尖锐的输出电流曲线,高开/关电流比和增强的场效应迁移率。通过利用纳米级图像化和电容耦合在双栅极结构中的优势,该研究进一步引入了超灵敏的基于in2o3的离子敏感场效应晶体管(isfet)用于pH传感,实现了约- 84.1 mV/pH的显着灵敏度。这些发现不仅突出了氧化物电子的可扩展纳米制造技术的潜力,而且为下一代生物医学传感器和可穿戴电子系统开辟了令人兴奋的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-Sensitivity ISFETs Enabled by Solution-Processed Indium Oxide and Nanoimprint Transferring Techniques

High-Sensitivity ISFETs Enabled by Solution-Processed Indium Oxide and Nanoimprint Transferring Techniques

This study presents a facile approach for fabricating high-performance indium oxide (In2O3) nanosheet thin-film transistors (TFTs) by using a combination of solution processing and nanoimprint transfer techniques. For the first time, nanostructured In2O3─featuring nanowire and honeycomb patterns with line widths as narrow as ∼158 and ∼89 nm, respectively─was successfully realized via a sol–gel nanoimprint strategy. The resulting nanosheet TFTs demonstrated outstanding electrical characteristics, including sharp output current profiles, a high ON/OFF current ratio, and enhanced field-effect mobility. By exploiting the advantages of nanoscale patterning and capacitive coupling in double-gate structures, the study further introduces ultrasensitive In2O3-based ion-sensitive field-effect transistors (ISFETs) for pH sensing, achieving a remarkable sensitivity of approximately −84.1 mV/pH. These findings not only highlight the potential of scalable nanofabrication techniques for oxide electronics but also open exciting opportunities for next-generation biomedical sensors and wearable electronic systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信