分子束外延过程中H2引入Ge1-xSnx / Ge1-x-ySixSny谐振隧道二极管的室温工作

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Shota Torimoto*, Shuto Ishimoto, Yoshiki Kato, Mitsuo Sakashita, Masashi Kurosawa, Osamu Nakatsuka and Shigehisa Shibayama*, 
{"title":"分子束外延过程中H2引入Ge1-xSnx / Ge1-x-ySixSny谐振隧道二极管的室温工作","authors":"Shota Torimoto*,&nbsp;Shuto Ishimoto,&nbsp;Yoshiki Kato,&nbsp;Mitsuo Sakashita,&nbsp;Masashi Kurosawa,&nbsp;Osamu Nakatsuka and Shigehisa Shibayama*,&nbsp;","doi":"10.1021/acsaelm.5c01049","DOIUrl":null,"url":null,"abstract":"<p >As oscillators used for terahertz communication, a resonant tunneling diode (RTD) composed of group-IV semiconductors is desirable. From the perspective of energy band engineering, we focus on the Ge<sub>1–<i>x</i></sub>Sn<sub><i>x</i></sub>/Ge<sub>1–<i>x</i>–<i>y</i></sub>Si<sub><i>x</i></sub>Sn<sub><i>y</i></sub> double-barrier structure (DBS) with group-IV compound materials. Although we observed negative differential resistance (NDR) at 10 K of the Ge<sub>1–<i>x</i></sub>Sn<sub><i>x</i></sub>/Ge<sub>1–<i>x</i>–<i>y</i></sub>Si<sub><i>x</i></sub>Sn<sub><i>y</i></sub> RTD, we needed to enhance its low operating temperature. This study explored the impact of introducing H<sub>2</sub> during the growth of Ge<sub>1–<i>x</i></sub>Sn<sub><i>x</i></sub>/Ge<sub>1–<i>x</i>–<i>y</i></sub>Si<sub><i>x</i></sub>Sn<sub><i>y</i></sub> DBS on their crystallinity and homogeneity. Our findings revealed that introducing H<sub>2</sub> during the growth of the Ge<sub>1–<i>x</i>–<i>y</i></sub>Si<sub><i>x</i></sub>Sn<sub><i>y</i></sub> layer with a high Si composition (approximately 50%) led to island growth, whereas the layer growth was more likely for Ge<sub>1–<i>x</i></sub>Sn<sub><i>x</i></sub>. By introducing H<sub>2</sub> only during the growth of the Ge<sub>1–<i>x</i></sub>Sn<sub><i>x</i></sub> layer, we achieved significantly improved crystallinity and homogeneity in the Ge<sub>1–<i>x</i></sub>Sn<sub><i>x</i></sub>/Ge<sub>1–<i>x</i>–<i>y</i></sub>Si<sub><i>x</i></sub>Sn<sub><i>y</i></sub> DBS. Consequently, we successfully observed NDR in the Ge<sub>1–<i>x</i></sub>Sn<sub><i>x</i></sub>/Ge<sub>1–<i>x</i>–<i>y</i></sub>Si<sub><i>x</i></sub>Sn<sub><i>y</i></sub> RTD over a wide temperature range of 10–300 K. Moreover, the improved crystallinity and homogeneity allowed for NDR to appear in both sweep directions of the bias voltage at 200 K. The peak current density and peak-to-valley current ratio were approximately 9.65 kA/cm<sup>2</sup> and 1.31, respectively, surpassing previous Ge<sub>1–<i>x</i></sub>Sn<sub><i>x</i></sub>/Ge<sub>1–<i>x</i>–<i>y</i></sub>Si<sub><i>x</i></sub>Sn<sub><i>y</i></sub> RTDs. Theoretical simulation of the current–voltage characteristics using TCAD indicated that the observed NDR originated from the second quantum level in the Ge<sub>1–<i>x</i></sub>Sn<sub><i>x</i></sub> well. Finally, we examined potential directions for further enhancement of reliability and output performances.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 16","pages":"7688–7696"},"PeriodicalIF":4.7000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Room-Temperature Operation of Ge1–xSnx/Ge1–x–ySixSny Resonant Tunneling Diodes Featured with H2 Introduction during Molecular Beam Epitaxy\",\"authors\":\"Shota Torimoto*,&nbsp;Shuto Ishimoto,&nbsp;Yoshiki Kato,&nbsp;Mitsuo Sakashita,&nbsp;Masashi Kurosawa,&nbsp;Osamu Nakatsuka and Shigehisa Shibayama*,&nbsp;\",\"doi\":\"10.1021/acsaelm.5c01049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >As oscillators used for terahertz communication, a resonant tunneling diode (RTD) composed of group-IV semiconductors is desirable. From the perspective of energy band engineering, we focus on the Ge<sub>1–<i>x</i></sub>Sn<sub><i>x</i></sub>/Ge<sub>1–<i>x</i>–<i>y</i></sub>Si<sub><i>x</i></sub>Sn<sub><i>y</i></sub> double-barrier structure (DBS) with group-IV compound materials. Although we observed negative differential resistance (NDR) at 10 K of the Ge<sub>1–<i>x</i></sub>Sn<sub><i>x</i></sub>/Ge<sub>1–<i>x</i>–<i>y</i></sub>Si<sub><i>x</i></sub>Sn<sub><i>y</i></sub> RTD, we needed to enhance its low operating temperature. This study explored the impact of introducing H<sub>2</sub> during the growth of Ge<sub>1–<i>x</i></sub>Sn<sub><i>x</i></sub>/Ge<sub>1–<i>x</i>–<i>y</i></sub>Si<sub><i>x</i></sub>Sn<sub><i>y</i></sub> DBS on their crystallinity and homogeneity. Our findings revealed that introducing H<sub>2</sub> during the growth of the Ge<sub>1–<i>x</i>–<i>y</i></sub>Si<sub><i>x</i></sub>Sn<sub><i>y</i></sub> layer with a high Si composition (approximately 50%) led to island growth, whereas the layer growth was more likely for Ge<sub>1–<i>x</i></sub>Sn<sub><i>x</i></sub>. By introducing H<sub>2</sub> only during the growth of the Ge<sub>1–<i>x</i></sub>Sn<sub><i>x</i></sub> layer, we achieved significantly improved crystallinity and homogeneity in the Ge<sub>1–<i>x</i></sub>Sn<sub><i>x</i></sub>/Ge<sub>1–<i>x</i>–<i>y</i></sub>Si<sub><i>x</i></sub>Sn<sub><i>y</i></sub> DBS. Consequently, we successfully observed NDR in the Ge<sub>1–<i>x</i></sub>Sn<sub><i>x</i></sub>/Ge<sub>1–<i>x</i>–<i>y</i></sub>Si<sub><i>x</i></sub>Sn<sub><i>y</i></sub> RTD over a wide temperature range of 10–300 K. Moreover, the improved crystallinity and homogeneity allowed for NDR to appear in both sweep directions of the bias voltage at 200 K. The peak current density and peak-to-valley current ratio were approximately 9.65 kA/cm<sup>2</sup> and 1.31, respectively, surpassing previous Ge<sub>1–<i>x</i></sub>Sn<sub><i>x</i></sub>/Ge<sub>1–<i>x</i>–<i>y</i></sub>Si<sub><i>x</i></sub>Sn<sub><i>y</i></sub> RTDs. Theoretical simulation of the current–voltage characteristics using TCAD indicated that the observed NDR originated from the second quantum level in the Ge<sub>1–<i>x</i></sub>Sn<sub><i>x</i></sub> well. Finally, we examined potential directions for further enhancement of reliability and output performances.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"7 16\",\"pages\":\"7688–7696\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaelm.5c01049\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.5c01049","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

作为用于太赫兹通信的振荡器,需要一种由iv族半导体组成的谐振隧道二极管(RTD)。从能带工程的角度出发,重点研究了四族复合材料的Ge1-xSnx / Ge1-x-ySixSny双势垒结构(DBS)。虽然我们在10 K时观察到Ge1-xSnx / Ge1-x-ySixSny RTD的负差分电阻(NDR),但我们需要提高其低工作温度。本研究探讨了在Ge1-xSnx / Ge1-x-ySixSny DBS生长过程中引入H2对其结晶度和均匀性的影响。我们的研究结果表明,在具有高Si成分(约50%)的Ge1-x-ySixSny层的生长过程中引入H2导致岛状生长,而Ge1-xSnx层更有可能生长。通过仅在Ge1-xSnx层生长过程中引入H2,我们显著改善了Ge1-xSnx / Ge1-x-ySixSny DBS的结晶度和均匀性。因此,我们成功地在10-300 K的宽温度范围内观察到Ge1-xSnx / Ge1-x-ySixSny RTD中的NDR。此外,结晶度和均匀性的改善使得NDR在200 K偏置电压的两个扫描方向上都出现。峰值电流密度和峰谷电流比分别约为9.65 kA/cm2和1.31,超过了以前的Ge1-xSnx / Ge1-x-ySixSny rtd。利用TCAD对其电流-电压特性进行理论模拟表明,观测到的NDR来源于Ge1-xSnx阱中的第二量子能级。最后,我们研究了进一步提高可靠性和输出性能的潜在方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Room-Temperature Operation of Ge1–xSnx/Ge1–x–ySixSny Resonant Tunneling Diodes Featured with H2 Introduction during Molecular Beam Epitaxy

Room-Temperature Operation of Ge1–xSnx/Ge1–x–ySixSny Resonant Tunneling Diodes Featured with H2 Introduction during Molecular Beam Epitaxy

As oscillators used for terahertz communication, a resonant tunneling diode (RTD) composed of group-IV semiconductors is desirable. From the perspective of energy band engineering, we focus on the Ge1–xSnx/Ge1–xySixSny double-barrier structure (DBS) with group-IV compound materials. Although we observed negative differential resistance (NDR) at 10 K of the Ge1–xSnx/Ge1–xySixSny RTD, we needed to enhance its low operating temperature. This study explored the impact of introducing H2 during the growth of Ge1–xSnx/Ge1–xySixSny DBS on their crystallinity and homogeneity. Our findings revealed that introducing H2 during the growth of the Ge1–xySixSny layer with a high Si composition (approximately 50%) led to island growth, whereas the layer growth was more likely for Ge1–xSnx. By introducing H2 only during the growth of the Ge1–xSnx layer, we achieved significantly improved crystallinity and homogeneity in the Ge1–xSnx/Ge1–xySixSny DBS. Consequently, we successfully observed NDR in the Ge1–xSnx/Ge1–xySixSny RTD over a wide temperature range of 10–300 K. Moreover, the improved crystallinity and homogeneity allowed for NDR to appear in both sweep directions of the bias voltage at 200 K. The peak current density and peak-to-valley current ratio were approximately 9.65 kA/cm2 and 1.31, respectively, surpassing previous Ge1–xSnx/Ge1–xySixSny RTDs. Theoretical simulation of the current–voltage characteristics using TCAD indicated that the observed NDR originated from the second quantum level in the Ge1–xSnx well. Finally, we examined potential directions for further enhancement of reliability and output performances.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信