用分子束外延技术在c-蓝宝石衬底上集成2D GaSe/3D β-Ga2O3混合维异质结构

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Umeshwar Reddy Nallasani, Nhu Quynh Diep, Chun-Yen Lin, Thi Bich Tuyen Huynh, Quynh Trang Tran, Hong-Jyun Wang, Wu-Ching Chou*, Chin-Hau Chia, Bi-Hsuan Lin and Sunny Saurabh, 
{"title":"用分子束外延技术在c-蓝宝石衬底上集成2D GaSe/3D β-Ga2O3混合维异质结构","authors":"Umeshwar Reddy Nallasani,&nbsp;Nhu Quynh Diep,&nbsp;Chun-Yen Lin,&nbsp;Thi Bich Tuyen Huynh,&nbsp;Quynh Trang Tran,&nbsp;Hong-Jyun Wang,&nbsp;Wu-Ching Chou*,&nbsp;Chin-Hau Chia,&nbsp;Bi-Hsuan Lin and Sunny Saurabh,&nbsp;","doi":"10.1021/acsaelm.5c01178","DOIUrl":null,"url":null,"abstract":"<p >In this study, we explore the heteroepitaxial growth and characteristics of 2D GaSe/3D β-Ga<sub>2</sub>O<sub>3</sub> mixed-dimensional (MD) heterostructures on c-Sapphire substrates by using molecular beam epitaxy (MBE). The β-Ga<sub>2</sub>O<sub>3</sub> film, synthesized in the initial stage, exhibited high crystallinity, serving as a suitable template for subsequent GaSe growth. <i>In situ</i> reflection high-energy electron diffraction (RHEED) provided critical insights into the nucleation dynamics of 2D GaSe on 3D β-Ga<sub>2</sub>O<sub>3</sub>/c-Sapphire under varying epitaxial conditions. High-resolution X-ray diffraction (HR-XRD) and Raman spectroscopy further confirmed the successful monolithic integration of these MD heterostructures, exhibiting high uniformity with large surface coverage. Notably, the Ga pretreatment on the 3D β-Ga<sub>2</sub>O<sub>3</sub>/c-Sapphire template prior to GaSe growth effectively stabilized the surface through Se passivation, promoting uniform 2D layer growth at 425 °C compared to the nontreated counterpart. This approach preserved the integrity of the 2D/3D heterointerface, as validated by microstructural analysis. Unlike strain-free exfoliated GaSe films, the epitaxial growth in this study allowed for tunable band-edge energy attributed to the strain induced in the films by modification of the growth temperature. The resulting MD heterojunction, formed between 2D GaSe (with near band-edge emission ∼1.81 eV grown at 480 °C) and 3D β-Ga<sub>2</sub>O<sub>3</sub> (∼4.96 eV), demonstrates significant potential for next-generation optoelectronic devices.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 16","pages":"7827–7837"},"PeriodicalIF":4.7000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsaelm.5c01178","citationCount":"0","resultStr":"{\"title\":\"Monolithic Integration of 2D GaSe/3D β-Ga2O3 Mixed-Dimensional Heterostructures on c-Sapphire Substrates by Molecular Beam Epitaxy\",\"authors\":\"Umeshwar Reddy Nallasani,&nbsp;Nhu Quynh Diep,&nbsp;Chun-Yen Lin,&nbsp;Thi Bich Tuyen Huynh,&nbsp;Quynh Trang Tran,&nbsp;Hong-Jyun Wang,&nbsp;Wu-Ching Chou*,&nbsp;Chin-Hau Chia,&nbsp;Bi-Hsuan Lin and Sunny Saurabh,&nbsp;\",\"doi\":\"10.1021/acsaelm.5c01178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In this study, we explore the heteroepitaxial growth and characteristics of 2D GaSe/3D β-Ga<sub>2</sub>O<sub>3</sub> mixed-dimensional (MD) heterostructures on c-Sapphire substrates by using molecular beam epitaxy (MBE). The β-Ga<sub>2</sub>O<sub>3</sub> film, synthesized in the initial stage, exhibited high crystallinity, serving as a suitable template for subsequent GaSe growth. <i>In situ</i> reflection high-energy electron diffraction (RHEED) provided critical insights into the nucleation dynamics of 2D GaSe on 3D β-Ga<sub>2</sub>O<sub>3</sub>/c-Sapphire under varying epitaxial conditions. High-resolution X-ray diffraction (HR-XRD) and Raman spectroscopy further confirmed the successful monolithic integration of these MD heterostructures, exhibiting high uniformity with large surface coverage. Notably, the Ga pretreatment on the 3D β-Ga<sub>2</sub>O<sub>3</sub>/c-Sapphire template prior to GaSe growth effectively stabilized the surface through Se passivation, promoting uniform 2D layer growth at 425 °C compared to the nontreated counterpart. This approach preserved the integrity of the 2D/3D heterointerface, as validated by microstructural analysis. Unlike strain-free exfoliated GaSe films, the epitaxial growth in this study allowed for tunable band-edge energy attributed to the strain induced in the films by modification of the growth temperature. The resulting MD heterojunction, formed between 2D GaSe (with near band-edge emission ∼1.81 eV grown at 480 °C) and 3D β-Ga<sub>2</sub>O<sub>3</sub> (∼4.96 eV), demonstrates significant potential for next-generation optoelectronic devices.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"7 16\",\"pages\":\"7827–7837\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsaelm.5c01178\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaelm.5c01178\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.5c01178","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们利用分子束外延(MBE)技术探索了2D GaSe/3D β-Ga2O3混合维(MD)异质结构在c-Sapphire衬底上的异质外延生长和特性。在初始阶段合成的β-Ga2O3薄膜具有较高的结晶度,可作为后续GaSe生长的合适模板。原位反射高能电子衍射(RHEED)为三维β-Ga2O3/c-蓝宝石在不同外延条件下的2D GaSe成核动力学提供了重要的见解。高分辨率x射线衍射(HR-XRD)和拉曼光谱进一步证实了这些MD异质结构的成功单片集成,具有高均匀性和大表面覆盖率。值得注意的是,在GaSe生长之前对3D β-Ga2O3/ C -蓝宝石模板进行Ga预处理,通过Se钝化有效地稳定了表面,与未处理的模板相比,在425℃下促进了2D层的均匀生长。这种方法保留了2D/3D异质界面的完整性,并通过微观结构分析得到验证。与无应变剥落的GaSe薄膜不同,本研究中的外延生长允许通过改变生长温度来调节薄膜中引起的应变来调节带边能量。由此产生的MD异质结在2D GaSe(在480 °C下生长,近带边发射~ 1.81 eV)和3D β-Ga2O3 (~ 4.96 eV)之间形成,显示出下一代光电器件的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monolithic Integration of 2D GaSe/3D β-Ga2O3 Mixed-Dimensional Heterostructures on c-Sapphire Substrates by Molecular Beam Epitaxy

In this study, we explore the heteroepitaxial growth and characteristics of 2D GaSe/3D β-Ga2O3 mixed-dimensional (MD) heterostructures on c-Sapphire substrates by using molecular beam epitaxy (MBE). The β-Ga2O3 film, synthesized in the initial stage, exhibited high crystallinity, serving as a suitable template for subsequent GaSe growth. In situ reflection high-energy electron diffraction (RHEED) provided critical insights into the nucleation dynamics of 2D GaSe on 3D β-Ga2O3/c-Sapphire under varying epitaxial conditions. High-resolution X-ray diffraction (HR-XRD) and Raman spectroscopy further confirmed the successful monolithic integration of these MD heterostructures, exhibiting high uniformity with large surface coverage. Notably, the Ga pretreatment on the 3D β-Ga2O3/c-Sapphire template prior to GaSe growth effectively stabilized the surface through Se passivation, promoting uniform 2D layer growth at 425 °C compared to the nontreated counterpart. This approach preserved the integrity of the 2D/3D heterointerface, as validated by microstructural analysis. Unlike strain-free exfoliated GaSe films, the epitaxial growth in this study allowed for tunable band-edge energy attributed to the strain induced in the films by modification of the growth temperature. The resulting MD heterojunction, formed between 2D GaSe (with near band-edge emission ∼1.81 eV grown at 480 °C) and 3D β-Ga2O3 (∼4.96 eV), demonstrates significant potential for next-generation optoelectronic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信