颗粒尺寸对压电纳米发电机性能影响的有限元分析

IF 2.9 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Fatma Benbrahim, Slim Naifar, Mohamed Dhia Ayadi, Olfa Kanoun
{"title":"颗粒尺寸对压电纳米发电机性能影响的有限元分析","authors":"Fatma Benbrahim,&nbsp;Slim Naifar,&nbsp;Mohamed Dhia Ayadi,&nbsp;Olfa Kanoun","doi":"10.1002/nme.70095","DOIUrl":null,"url":null,"abstract":"<p>This study presents a multiscale finite element investigation into how particle dimensions influence the performance of piezoelectric nanogenerators (PENGs) based on PDMS/<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>BaTiO</mtext>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{BaTiO}}_3 $$</annotation>\n </semantics></math> nanocomposites. Using COMSOL Multiphysics, we developed a comprehensive computational framework to analyze the effects of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>BaTiO</mtext>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{BaTiO}}_3 $$</annotation>\n </semantics></math> particle size (50 nm, 100 nm, 2 <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <annotation>$$ \\upmu $$</annotation>\n </semantics></math>m and 5 <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <annotation>$$ \\upmu $$</annotation>\n </semantics></math>m) and loading concentration (10%, 15%, 20%, and 25%) on energy harvesting efficiency. Our model integrates an advanced stochastic algorithm for particle distribution and employs representative volume element (RVE) analysis to accurately capture the material's heterogeneous microstructure. The model's validity was established through rigorous comparison with theoretical predictions of resonance frequencies and experimental power density measurements, demonstrating excellent agreement across multiple operating conditions. Our findings reveal that nanoscale <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>BaTiO</mtext>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{BaTiO}}_3 $$</annotation>\n </semantics></math> particles (50–100 nm) generate substantially higher power densities compared to their microscale counterparts (2–5 <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <annotation>$$ \\upmu $$</annotation>\n </semantics></math>m), with peak performance observed at 15–20 wt.% particle concentration. The results emphasize the significance of particle size in enhancing PENG efficiency, providing a basis for improved material design and device optimization.</p>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"126 16","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nme.70095","citationCount":"0","resultStr":"{\"title\":\"Finite Element Analysis of Particle Size Effects on Piezoelectric Nanogenerator Performance\",\"authors\":\"Fatma Benbrahim,&nbsp;Slim Naifar,&nbsp;Mohamed Dhia Ayadi,&nbsp;Olfa Kanoun\",\"doi\":\"10.1002/nme.70095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study presents a multiscale finite element investigation into how particle dimensions influence the performance of piezoelectric nanogenerators (PENGs) based on PDMS/<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>BaTiO</mtext>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{BaTiO}}_3 $$</annotation>\\n </semantics></math> nanocomposites. Using COMSOL Multiphysics, we developed a comprehensive computational framework to analyze the effects of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>BaTiO</mtext>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{BaTiO}}_3 $$</annotation>\\n </semantics></math> particle size (50 nm, 100 nm, 2 <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>μ</mi>\\n </mrow>\\n <annotation>$$ \\\\upmu $$</annotation>\\n </semantics></math>m and 5 <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>μ</mi>\\n </mrow>\\n <annotation>$$ \\\\upmu $$</annotation>\\n </semantics></math>m) and loading concentration (10%, 15%, 20%, and 25%) on energy harvesting efficiency. Our model integrates an advanced stochastic algorithm for particle distribution and employs representative volume element (RVE) analysis to accurately capture the material's heterogeneous microstructure. The model's validity was established through rigorous comparison with theoretical predictions of resonance frequencies and experimental power density measurements, demonstrating excellent agreement across multiple operating conditions. Our findings reveal that nanoscale <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>BaTiO</mtext>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{BaTiO}}_3 $$</annotation>\\n </semantics></math> particles (50–100 nm) generate substantially higher power densities compared to their microscale counterparts (2–5 <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>μ</mi>\\n </mrow>\\n <annotation>$$ \\\\upmu $$</annotation>\\n </semantics></math>m), with peak performance observed at 15–20 wt.% particle concentration. The results emphasize the significance of particle size in enhancing PENG efficiency, providing a basis for improved material design and device optimization.</p>\",\"PeriodicalId\":13699,\"journal\":{\"name\":\"International Journal for Numerical Methods in Engineering\",\"volume\":\"126 16\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nme.70095\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nme.70095\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.70095","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文采用多尺度有限元方法研究了粒子尺寸对基于PDMS/ batio3 $$ {\mathrm{BaTiO}}_3 $$纳米复合材料的压电纳米发电机(PENGs)性能的影响。利用COMSOL Multiphysics,我们开发了一个综合的计算框架来分析batio3 $$ {\mathrm{BaTiO}}_3 $$粒径(50 nm, 100 nm,2 μ $$ \upmu $$ m和5 μ $$ \upmu $$ m)和加载浓度(10%, 15%, 20%, and 25%) on energy harvesting efficiency. Our model integrates an advanced stochastic algorithm for particle distribution and employs representative volume element (RVE) analysis to accurately capture the material's heterogeneous microstructure. The model's validity was established through rigorous comparison with theoretical predictions of resonance frequencies and experimental power density measurements, demonstrating excellent agreement across multiple operating conditions. Our findings reveal that nanoscale BaTiO 3 $$ {\mathrm{BaTiO}}_3 $$ particles (50–100 nm) generate substantially higher power densities compared to their microscale counterparts (2–5 μ $$ \upmu $$ m), with peak performance observed at 15–20 wt.% particle concentration. The results emphasize the significance of particle size in enhancing PENG efficiency, providing a basis for improved material design and device optimization.
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Finite Element Analysis of Particle Size Effects on Piezoelectric Nanogenerator Performance

Finite Element Analysis of Particle Size Effects on Piezoelectric Nanogenerator Performance

This study presents a multiscale finite element investigation into how particle dimensions influence the performance of piezoelectric nanogenerators (PENGs) based on PDMS/ BaTiO 3 $$ {\mathrm{BaTiO}}_3 $$ nanocomposites. Using COMSOL Multiphysics, we developed a comprehensive computational framework to analyze the effects of BaTiO 3 $$ {\mathrm{BaTiO}}_3 $$ particle size (50 nm, 100 nm, 2 μ $$ \upmu $$ m and 5 μ $$ \upmu $$ m) and loading concentration (10%, 15%, 20%, and 25%) on energy harvesting efficiency. Our model integrates an advanced stochastic algorithm for particle distribution and employs representative volume element (RVE) analysis to accurately capture the material's heterogeneous microstructure. The model's validity was established through rigorous comparison with theoretical predictions of resonance frequencies and experimental power density measurements, demonstrating excellent agreement across multiple operating conditions. Our findings reveal that nanoscale BaTiO 3 $$ {\mathrm{BaTiO}}_3 $$ particles (50–100 nm) generate substantially higher power densities compared to their microscale counterparts (2–5 μ $$ \upmu $$ m), with peak performance observed at 15–20 wt.% particle concentration. The results emphasize the significance of particle size in enhancing PENG efficiency, providing a basis for improved material design and device optimization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
6.90%
发文量
276
审稿时长
5.3 months
期刊介绍: The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems. The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信