{"title":"实现有机电化学晶体管超低接触电阻的通用方法","authors":"Luis-Abraham Lozano-Hernández, Patrice Rannou, Yvan Bonnassieux, Sébastien Sanaur","doi":"10.1002/admi.202500208","DOIUrl":null,"url":null,"abstract":"<p>Organic ElectroChemical Transistors (OECTs) are intensively studied for enabling their use in organic bioelectronics, neuromorphic systems, and biosensors. Beyond device geometry, reaching optimal operation of organic electronic circuits requires the optimization of the physico-chemical properties of the channel. Toward this end, the effects of a “bulk” doping of the channel material and its influence on the contact resistance (R<sub>C</sub>) at the interface between a Polymeric Mixed Ionic-Electronic conductors (PMIECs) and the Source (S) and Drain (D) electrodes are presented. An <i>easy-to-implement</i> method to achieve ultra-low contact resistances in OECTs is introduced. By incorporation of LiTFSI, a 4x transconductance improvement is achieved, and a decrease of R<sub>C</sub> by a factor of ≈2 and ≈40 has been observed for <i>p-</i>type or <i>n-</i>type PMIECs, respectively. It reaches an unprecedented width-normalized contact resistance value as low as 1 Ohm.cm with the p(g2T-T) polymer. The formation of very localized domains in the polymeric matrix in the vicinity of the electrodes, as a result of the reduction of TFSIˉ anions, which modulates the energy barrier at the S/D interface, is suggested here. Furthermore, both p(g2T-T) and p(gNDI-gT2) polymers exhibit low water uptake with minute amounts of LiTFSI. Worth noticing, doped p(g2T-T) preserves its volumetric capacitance and demonstrates an exceptional long-term stability. Finally, a universal strategy to fine-tune OECT performances, drawing prospects for implementing next-generation applications in organic bioelectronics and neuromorphics, is proposed.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 16","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202500208","citationCount":"0","resultStr":"{\"title\":\"A Universal Method for Achieving Ultra-Low Contact Resistances in Organic Electrochemical Transistors\",\"authors\":\"Luis-Abraham Lozano-Hernández, Patrice Rannou, Yvan Bonnassieux, Sébastien Sanaur\",\"doi\":\"10.1002/admi.202500208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Organic ElectroChemical Transistors (OECTs) are intensively studied for enabling their use in organic bioelectronics, neuromorphic systems, and biosensors. Beyond device geometry, reaching optimal operation of organic electronic circuits requires the optimization of the physico-chemical properties of the channel. Toward this end, the effects of a “bulk” doping of the channel material and its influence on the contact resistance (R<sub>C</sub>) at the interface between a Polymeric Mixed Ionic-Electronic conductors (PMIECs) and the Source (S) and Drain (D) electrodes are presented. An <i>easy-to-implement</i> method to achieve ultra-low contact resistances in OECTs is introduced. By incorporation of LiTFSI, a 4x transconductance improvement is achieved, and a decrease of R<sub>C</sub> by a factor of ≈2 and ≈40 has been observed for <i>p-</i>type or <i>n-</i>type PMIECs, respectively. It reaches an unprecedented width-normalized contact resistance value as low as 1 Ohm.cm with the p(g2T-T) polymer. The formation of very localized domains in the polymeric matrix in the vicinity of the electrodes, as a result of the reduction of TFSIˉ anions, which modulates the energy barrier at the S/D interface, is suggested here. Furthermore, both p(g2T-T) and p(gNDI-gT2) polymers exhibit low water uptake with minute amounts of LiTFSI. Worth noticing, doped p(g2T-T) preserves its volumetric capacitance and demonstrates an exceptional long-term stability. Finally, a universal strategy to fine-tune OECT performances, drawing prospects for implementing next-generation applications in organic bioelectronics and neuromorphics, is proposed.</p>\",\"PeriodicalId\":115,\"journal\":{\"name\":\"Advanced Materials Interfaces\",\"volume\":\"12 16\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202500208\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/admi.202500208\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/admi.202500208","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Universal Method for Achieving Ultra-Low Contact Resistances in Organic Electrochemical Transistors
Organic ElectroChemical Transistors (OECTs) are intensively studied for enabling their use in organic bioelectronics, neuromorphic systems, and biosensors. Beyond device geometry, reaching optimal operation of organic electronic circuits requires the optimization of the physico-chemical properties of the channel. Toward this end, the effects of a “bulk” doping of the channel material and its influence on the contact resistance (RC) at the interface between a Polymeric Mixed Ionic-Electronic conductors (PMIECs) and the Source (S) and Drain (D) electrodes are presented. An easy-to-implement method to achieve ultra-low contact resistances in OECTs is introduced. By incorporation of LiTFSI, a 4x transconductance improvement is achieved, and a decrease of RC by a factor of ≈2 and ≈40 has been observed for p-type or n-type PMIECs, respectively. It reaches an unprecedented width-normalized contact resistance value as low as 1 Ohm.cm with the p(g2T-T) polymer. The formation of very localized domains in the polymeric matrix in the vicinity of the electrodes, as a result of the reduction of TFSIˉ anions, which modulates the energy barrier at the S/D interface, is suggested here. Furthermore, both p(g2T-T) and p(gNDI-gT2) polymers exhibit low water uptake with minute amounts of LiTFSI. Worth noticing, doped p(g2T-T) preserves its volumetric capacitance and demonstrates an exceptional long-term stability. Finally, a universal strategy to fine-tune OECT performances, drawing prospects for implementing next-generation applications in organic bioelectronics and neuromorphics, is proposed.
期刊介绍:
Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018.
The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface.
Advanced Materials Interfaces covers all topics in interface-related research:
Oil / water separation,
Applications of nanostructured materials,
2D materials and heterostructures,
Surfaces and interfaces in organic electronic devices,
Catalysis and membranes,
Self-assembly and nanopatterned surfaces,
Composite and coating materials,
Biointerfaces for technical and medical applications.
Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.