探讨硫氧还蛋白相互作用蛋白(TXNIP)作为心血管疾病的治疗靶点

IF 3.6 3区 医学 Q2 CHEMISTRY, MEDICINAL
Shrutika Date, Lokesh Kumar Bhatt
{"title":"探讨硫氧还蛋白相互作用蛋白(TXNIP)作为心血管疾病的治疗靶点","authors":"Shrutika Date,&nbsp;Lokesh Kumar Bhatt","doi":"10.1002/ardp.70082","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Cardiovascular diseases (CVDs) are the primary causes of death globally. Risk factors such as aging, poor lifestyle, and genetics significantly influence how these diseases progress, with oxidative stress being an important factor in their pathogenesis. Thioredoxin-interacting protein (TXNIP), a redox regulator, has emerged as a crucial mediator in oxidative stress-mediated CVD. TXNIP is a pro-oxidant that disrupts thioredoxin (TRX) antioxidant function and produces a redox imbalance that triggers vascular damage, endothelial dysfunction, and CVD progression. TXNIP has been shown to trigger the release of the proinflammatory cytokines IL-1β and IL-18, by activating inflammatory signaling through the NLRP3 inflammasome. By altering the interaction between TRX and ASK1, TXNIP regulates apoptosis and pyroptosis, which triggers cell death following oxidative stress. The present review highlights TXNIP's role in the progression of CVD by regulating various signaling pathways such as TXNIP/SIRT1/FOXO1, TXNIP/Redd1, TLR4/NF-κB/TXNIP/NLRP3, and NRF2/TXNIP. The review further explores TXNIP's potential as a therapeutic target in CVD intervention.</p></div>","PeriodicalId":128,"journal":{"name":"Archiv der Pharmazie","volume":"358 8","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Thioredoxin-Interacting Protein (TXNIP) as a Therapeutic Target for Cardiovascular Diseases\",\"authors\":\"Shrutika Date,&nbsp;Lokesh Kumar Bhatt\",\"doi\":\"10.1002/ardp.70082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Cardiovascular diseases (CVDs) are the primary causes of death globally. Risk factors such as aging, poor lifestyle, and genetics significantly influence how these diseases progress, with oxidative stress being an important factor in their pathogenesis. Thioredoxin-interacting protein (TXNIP), a redox regulator, has emerged as a crucial mediator in oxidative stress-mediated CVD. TXNIP is a pro-oxidant that disrupts thioredoxin (TRX) antioxidant function and produces a redox imbalance that triggers vascular damage, endothelial dysfunction, and CVD progression. TXNIP has been shown to trigger the release of the proinflammatory cytokines IL-1β and IL-18, by activating inflammatory signaling through the NLRP3 inflammasome. By altering the interaction between TRX and ASK1, TXNIP regulates apoptosis and pyroptosis, which triggers cell death following oxidative stress. The present review highlights TXNIP's role in the progression of CVD by regulating various signaling pathways such as TXNIP/SIRT1/FOXO1, TXNIP/Redd1, TLR4/NF-κB/TXNIP/NLRP3, and NRF2/TXNIP. The review further explores TXNIP's potential as a therapeutic target in CVD intervention.</p></div>\",\"PeriodicalId\":128,\"journal\":{\"name\":\"Archiv der Pharmazie\",\"volume\":\"358 8\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Pharmazie\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ardp.70082\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Pharmazie","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ardp.70082","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

心血管疾病是全球死亡的主要原因。衰老、不良生活方式和遗传等危险因素显著影响这些疾病的进展,氧化应激是其发病机制的重要因素。硫氧还蛋白相互作用蛋白(TXNIP)是一种氧化还原调节因子,在氧化应激介导的心血管疾病中起着重要的调节作用。TXNIP是一种促氧化剂,可破坏硫氧还蛋白(TRX)的抗氧化功能,并产生氧化还原失衡,从而引发血管损伤、内皮功能障碍和心血管疾病进展。TXNIP已被证明通过NLRP3炎症小体激活炎症信号,从而触发促炎细胞因子IL-1β和IL-18的释放。通过改变TRX和ASK1之间的相互作用,TXNIP调节细胞凋亡和焦亡,从而引发氧化应激后的细胞死亡。本综述强调了TXNIP通过调节TXNIP/SIRT1/ fox01、TXNIP/Redd1、TLR4/NF-κB/TXNIP/NLRP3和NRF2/TXNIP等多种信号通路在CVD进展中的作用。这篇综述进一步探讨了TXNIP作为心血管疾病干预治疗靶点的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exploring Thioredoxin-Interacting Protein (TXNIP) as a Therapeutic Target for Cardiovascular Diseases

Exploring Thioredoxin-Interacting Protein (TXNIP) as a Therapeutic Target for Cardiovascular Diseases

Cardiovascular diseases (CVDs) are the primary causes of death globally. Risk factors such as aging, poor lifestyle, and genetics significantly influence how these diseases progress, with oxidative stress being an important factor in their pathogenesis. Thioredoxin-interacting protein (TXNIP), a redox regulator, has emerged as a crucial mediator in oxidative stress-mediated CVD. TXNIP is a pro-oxidant that disrupts thioredoxin (TRX) antioxidant function and produces a redox imbalance that triggers vascular damage, endothelial dysfunction, and CVD progression. TXNIP has been shown to trigger the release of the proinflammatory cytokines IL-1β and IL-18, by activating inflammatory signaling through the NLRP3 inflammasome. By altering the interaction between TRX and ASK1, TXNIP regulates apoptosis and pyroptosis, which triggers cell death following oxidative stress. The present review highlights TXNIP's role in the progression of CVD by regulating various signaling pathways such as TXNIP/SIRT1/FOXO1, TXNIP/Redd1, TLR4/NF-κB/TXNIP/NLRP3, and NRF2/TXNIP. The review further explores TXNIP's potential as a therapeutic target in CVD intervention.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Pharmazie
Archiv der Pharmazie 医学-化学综合
CiteScore
7.90
自引率
5.90%
发文量
176
审稿时长
3.0 months
期刊介绍: Archiv der Pharmazie - Chemistry in Life Sciences is an international journal devoted to research and development in all fields of pharmaceutical and medicinal chemistry. Emphasis is put on papers combining synthetic organic chemistry, structural biology, molecular modelling, bioorganic chemistry, natural products chemistry, biochemistry or analytical methods with pharmaceutical or medicinal aspects such as biological activity. The focus of this journal is put on original research papers, but other scientifically valuable contributions (e.g. reviews, minireviews, highlights, symposia contributions, discussions, and essays) are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信