抗微生物钛铜合金:微观结构在弧熔成分中的作用

IF 3.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Daisy Rabbitt, Paraic O’Kelly, Victor M. Villapún, Luke N. Carter, Alexander J. Knowles, Sophie C. Cox
{"title":"抗微生物钛铜合金:微观结构在弧熔成分中的作用","authors":"Daisy Rabbitt,&nbsp;Paraic O’Kelly,&nbsp;Victor M. Villapún,&nbsp;Luke N. Carter,&nbsp;Alexander J. Knowles,&nbsp;Sophie C. Cox","doi":"10.1002/adem.202500347","DOIUrl":null,"url":null,"abstract":"<p>Copper-containing alloys have attracted global attention in response to rising rates of orthopedic implant infections and antimicrobial resistance. Two theories have emerged for the antimicrobial mechanisms of titanium–copper alloys: ion release and contact sterilization. While previous studies have focused on the overall effect of intermetallic Ti<sub>2</sub>Cu phases, this research digs deeper, unpicking the influence of precipitate size and morphology. Herein, heat treatment (950 °C and 760/820 °C) of cast Ti-11.5Cu and Ti-33Cu (wt%) alloys may be used as a tool to tune antimicrobial potency through microstructural refinement. Specifically, it is shown that nanoscale precipitates (≈30 nm) of Ti<sub>2</sub>Cu exhibit limited <i>in vitro</i> efficacy against <i>Staphylococcus aureus</i>. While larger (≈5 μm), rounded precipitates exhibit superior action due to increased surface contact. Contrary to the literature, this study shows no detectable Cu<sup>2+</sup> ion release in 0.9% NaCl over 7 days, measured by inductively coupled plasma optical emission spectroscopy, suggesting that under these manufacturing conditions, the antimicrobial mechanism is solely contact dependent. <i>In vitro</i> studies indicate that while Ti<sub>2</sub>Cu phases contribute to antimicrobial properties, a balance in Cu content and precipitate size is critical for both bacterial and native bone cell cytotoxicity. Overall, this study demonstrates a significant link between phase size, morphology, and desirable antimicrobial properties of exploratory cast Ti–Cu alloys.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"27 16","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adem.202500347","citationCount":"0","resultStr":"{\"title\":\"Antimicrobial Titanium–Copper Alloys: The Role of Microstructure in Arc-Melted Compositions\",\"authors\":\"Daisy Rabbitt,&nbsp;Paraic O’Kelly,&nbsp;Victor M. Villapún,&nbsp;Luke N. Carter,&nbsp;Alexander J. Knowles,&nbsp;Sophie C. Cox\",\"doi\":\"10.1002/adem.202500347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Copper-containing alloys have attracted global attention in response to rising rates of orthopedic implant infections and antimicrobial resistance. Two theories have emerged for the antimicrobial mechanisms of titanium–copper alloys: ion release and contact sterilization. While previous studies have focused on the overall effect of intermetallic Ti<sub>2</sub>Cu phases, this research digs deeper, unpicking the influence of precipitate size and morphology. Herein, heat treatment (950 °C and 760/820 °C) of cast Ti-11.5Cu and Ti-33Cu (wt%) alloys may be used as a tool to tune antimicrobial potency through microstructural refinement. Specifically, it is shown that nanoscale precipitates (≈30 nm) of Ti<sub>2</sub>Cu exhibit limited <i>in vitro</i> efficacy against <i>Staphylococcus aureus</i>. While larger (≈5 μm), rounded precipitates exhibit superior action due to increased surface contact. Contrary to the literature, this study shows no detectable Cu<sup>2+</sup> ion release in 0.9% NaCl over 7 days, measured by inductively coupled plasma optical emission spectroscopy, suggesting that under these manufacturing conditions, the antimicrobial mechanism is solely contact dependent. <i>In vitro</i> studies indicate that while Ti<sub>2</sub>Cu phases contribute to antimicrobial properties, a balance in Cu content and precipitate size is critical for both bacterial and native bone cell cytotoxicity. Overall, this study demonstrates a significant link between phase size, morphology, and desirable antimicrobial properties of exploratory cast Ti–Cu alloys.</p>\",\"PeriodicalId\":7275,\"journal\":{\"name\":\"Advanced Engineering Materials\",\"volume\":\"27 16\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adem.202500347\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Engineering Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adem.202500347\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adem.202500347","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

含铜合金引起了全球的关注,以应对骨科植入物感染和抗菌素耐药性的上升率。关于钛铜合金的抗菌机理,出现了离子释放和接触灭菌两种理论。以往的研究主要集中在金属间Ti2Cu相的整体影响上,而本研究则深入挖掘,揭示了析出相尺寸和形貌的影响。在此,热处理(950°C和760/820°C)的铸态Ti-11.5Cu和Ti-33Cu (wt%)合金可以作为一种工具,通过显微组织的细化来调整抗菌效力。具体来说,研究表明Ti2Cu的纳米级沉淀物(≈30 nm)对金黄色葡萄球菌的体外抑制作用有限。较大(≈5 μm)的圆形析出物由于增加了表面接触而表现出更好的作用。与文献相反,本研究显示,通过电感耦合等离子体发射光谱测量,在0.9% NaCl中7天内没有检测到Cu2+离子释放,这表明在这些制造条件下,抗菌机制完全依赖于接触。体外研究表明,虽然Ti2Cu相有助于抗菌性能,但Cu含量和沉淀大小的平衡对于细菌和天然骨细胞的细胞毒性至关重要。总的来说,这项研究证明了探索性铸造Ti-Cu合金的相尺寸、形态和理想的抗菌性能之间的重要联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Antimicrobial Titanium–Copper Alloys: The Role of Microstructure in Arc-Melted Compositions

Antimicrobial Titanium–Copper Alloys: The Role of Microstructure in Arc-Melted Compositions

Antimicrobial Titanium–Copper Alloys: The Role of Microstructure in Arc-Melted Compositions

Antimicrobial Titanium–Copper Alloys: The Role of Microstructure in Arc-Melted Compositions

Antimicrobial Titanium–Copper Alloys: The Role of Microstructure in Arc-Melted Compositions

Antimicrobial Titanium–Copper Alloys: The Role of Microstructure in Arc-Melted Compositions

Copper-containing alloys have attracted global attention in response to rising rates of orthopedic implant infections and antimicrobial resistance. Two theories have emerged for the antimicrobial mechanisms of titanium–copper alloys: ion release and contact sterilization. While previous studies have focused on the overall effect of intermetallic Ti2Cu phases, this research digs deeper, unpicking the influence of precipitate size and morphology. Herein, heat treatment (950 °C and 760/820 °C) of cast Ti-11.5Cu and Ti-33Cu (wt%) alloys may be used as a tool to tune antimicrobial potency through microstructural refinement. Specifically, it is shown that nanoscale precipitates (≈30 nm) of Ti2Cu exhibit limited in vitro efficacy against Staphylococcus aureus. While larger (≈5 μm), rounded precipitates exhibit superior action due to increased surface contact. Contrary to the literature, this study shows no detectable Cu2+ ion release in 0.9% NaCl over 7 days, measured by inductively coupled plasma optical emission spectroscopy, suggesting that under these manufacturing conditions, the antimicrobial mechanism is solely contact dependent. In vitro studies indicate that while Ti2Cu phases contribute to antimicrobial properties, a balance in Cu content and precipitate size is critical for both bacterial and native bone cell cytotoxicity. Overall, this study demonstrates a significant link between phase size, morphology, and desirable antimicrobial properties of exploratory cast Ti–Cu alloys.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信