La2/3Sr1/3MnO3/SrTiO3外延NiO薄膜的应变应变与畴结构

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Shoulong Chen, Carlos Frontera, Meritxell Toda-Casaban, Alberto Pomar, Lluis Balcells, Zorica Konstantinovic, Cesar Magén, Benjamin Martinez, Narcis Mestres
{"title":"La2/3Sr1/3MnO3/SrTiO3外延NiO薄膜的应变应变与畴结构","authors":"Shoulong Chen,&nbsp;Carlos Frontera,&nbsp;Meritxell Toda-Casaban,&nbsp;Alberto Pomar,&nbsp;Lluis Balcells,&nbsp;Zorica Konstantinovic,&nbsp;Cesar Magén,&nbsp;Benjamin Martinez,&nbsp;Narcis Mestres","doi":"10.1002/admi.202500452","DOIUrl":null,"url":null,"abstract":"<p>This study reports on the epitaxial growth and structural characterization of ultrathin NiO-films deposited by magnetron sputtering on La<sub>2/3</sub>Sr<sub>1/3</sub>MnO<sub>3</sub> (LSMO) films grown on SrTiO<sub>3</sub> (STO) substrates with (001)- and (111)-orientations. X-ray diffraction and atomic-force microscopy show that all NiO layers are single-phase, face-centered pseudo-cubic, atomically smooth, root-main-square (RMS) surface roughness &lt;0.15 nm, and form abrupt interfaces with LSMO. High-resolution reciprocal-space maps reveal that the films are largely relaxed, but exhibit a slight compressive distortion, yielding unit-cell volumes larger than bulk NiO. Despite a nominal ≈7% lattice mismatch, aberration-corrected scanning transmission electron microscopy uncovers an array of misfit dislocations at the NiO/LSMO interface that help to accommodate strain allowing epitaxial growth of NiO layers. On (001)-oriented samples, the four antiferromagnetic T-domains are oblique to the sample plane, while on the (111) case, one lies in-plane. This in-plane domain shows greater spacing between ferromagnetic (111) planes due to unit cell distortion. This structural domain splitting can influence magnetic order and spin transmission efficiency, highlighting crystallographic orientation as a key factor in designing high-performance spintronic devices.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 16","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202500452","citationCount":"0","resultStr":"{\"title\":\"Strain Relief and Domain Architecture in Epitaxial NiO Films on La2/3Sr1/3MnO3/SrTiO3 for Spin-Transport Engineering\",\"authors\":\"Shoulong Chen,&nbsp;Carlos Frontera,&nbsp;Meritxell Toda-Casaban,&nbsp;Alberto Pomar,&nbsp;Lluis Balcells,&nbsp;Zorica Konstantinovic,&nbsp;Cesar Magén,&nbsp;Benjamin Martinez,&nbsp;Narcis Mestres\",\"doi\":\"10.1002/admi.202500452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study reports on the epitaxial growth and structural characterization of ultrathin NiO-films deposited by magnetron sputtering on La<sub>2/3</sub>Sr<sub>1/3</sub>MnO<sub>3</sub> (LSMO) films grown on SrTiO<sub>3</sub> (STO) substrates with (001)- and (111)-orientations. X-ray diffraction and atomic-force microscopy show that all NiO layers are single-phase, face-centered pseudo-cubic, atomically smooth, root-main-square (RMS) surface roughness &lt;0.15 nm, and form abrupt interfaces with LSMO. High-resolution reciprocal-space maps reveal that the films are largely relaxed, but exhibit a slight compressive distortion, yielding unit-cell volumes larger than bulk NiO. Despite a nominal ≈7% lattice mismatch, aberration-corrected scanning transmission electron microscopy uncovers an array of misfit dislocations at the NiO/LSMO interface that help to accommodate strain allowing epitaxial growth of NiO layers. On (001)-oriented samples, the four antiferromagnetic T-domains are oblique to the sample plane, while on the (111) case, one lies in-plane. This in-plane domain shows greater spacing between ferromagnetic (111) planes due to unit cell distortion. This structural domain splitting can influence magnetic order and spin transmission efficiency, highlighting crystallographic orientation as a key factor in designing high-performance spintronic devices.</p>\",\"PeriodicalId\":115,\"journal\":{\"name\":\"Advanced Materials Interfaces\",\"volume\":\"12 16\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202500452\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/admi.202500452\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/admi.202500452","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究报道了磁控溅射在(001)-和(111)-取向的SrTiO3 (STO)衬底上生长的La2/3Sr1/3MnO3 (LSMO)薄膜上的超薄nio薄膜的外延生长和结构表征。x射线衍射和原子力显微镜分析表明,所有NiO层均为单相,面心伪立方,原子光滑,表面RMS粗糙度为0.15 nm,并与LSMO形成突变界面。高分辨率的互空间图显示,薄膜在很大程度上是松弛的,但表现出轻微的压缩变形,产生比大块NiO更大的单元体积。尽管名义上有≈7%的晶格错配,但像差校正扫描透射电子显微镜发现,在NiO/LSMO界面上存在一系列错配位错,有助于适应应变,从而使NiO层外延生长。在(001)取向样品上,4个反铁磁t畴斜向样品平面,而在(111)取向样品上,1个反铁磁t畴在平面内。由于单元胞畸变,这个平面内域显示铁磁(111)平面之间的间距更大。这种结构域分裂可以影响磁有序和自旋传输效率,突出了晶体取向是设计高性能自旋电子器件的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Strain Relief and Domain Architecture in Epitaxial NiO Films on La2/3Sr1/3MnO3/SrTiO3 for Spin-Transport Engineering

Strain Relief and Domain Architecture in Epitaxial NiO Films on La2/3Sr1/3MnO3/SrTiO3 for Spin-Transport Engineering

Strain Relief and Domain Architecture in Epitaxial NiO Films on La2/3Sr1/3MnO3/SrTiO3 for Spin-Transport Engineering

Strain Relief and Domain Architecture in Epitaxial NiO Films on La2/3Sr1/3MnO3/SrTiO3 for Spin-Transport Engineering

Strain Relief and Domain Architecture in Epitaxial NiO Films on La2/3Sr1/3MnO3/SrTiO3 for Spin-Transport Engineering

This study reports on the epitaxial growth and structural characterization of ultrathin NiO-films deposited by magnetron sputtering on La2/3Sr1/3MnO3 (LSMO) films grown on SrTiO3 (STO) substrates with (001)- and (111)-orientations. X-ray diffraction and atomic-force microscopy show that all NiO layers are single-phase, face-centered pseudo-cubic, atomically smooth, root-main-square (RMS) surface roughness <0.15 nm, and form abrupt interfaces with LSMO. High-resolution reciprocal-space maps reveal that the films are largely relaxed, but exhibit a slight compressive distortion, yielding unit-cell volumes larger than bulk NiO. Despite a nominal ≈7% lattice mismatch, aberration-corrected scanning transmission electron microscopy uncovers an array of misfit dislocations at the NiO/LSMO interface that help to accommodate strain allowing epitaxial growth of NiO layers. On (001)-oriented samples, the four antiferromagnetic T-domains are oblique to the sample plane, while on the (111) case, one lies in-plane. This in-plane domain shows greater spacing between ferromagnetic (111) planes due to unit cell distortion. This structural domain splitting can influence magnetic order and spin transmission efficiency, highlighting crystallographic orientation as a key factor in designing high-performance spintronic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials Interfaces
Advanced Materials Interfaces CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
5.60%
发文量
1174
审稿时长
1.3 months
期刊介绍: Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018. The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface. Advanced Materials Interfaces covers all topics in interface-related research: Oil / water separation, Applications of nanostructured materials, 2D materials and heterostructures, Surfaces and interfaces in organic electronic devices, Catalysis and membranes, Self-assembly and nanopatterned surfaces, Composite and coating materials, Biointerfaces for technical and medical applications. Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信