Dan Smale, Martyn P. Chipperfield, Richard Querel, Gerald E. Nedoluha, Udo Frieß, John Robinson, Sylvia Nichol, Saffron Heddell, Wuhu Feng, R. Michael Gomez, Ian Boyd, Penny Smale, Michael Kotkamp, Zoë Jane Buxton
{"title":"从南极洲到达高地观测到的Hunga Tonga-Hunga ha 'apai火山喷发对2023年南极臭氧空洞的影响","authors":"Dan Smale, Martyn P. Chipperfield, Richard Querel, Gerald E. Nedoluha, Udo Frieß, John Robinson, Sylvia Nichol, Saffron Heddell, Wuhu Feng, R. Michael Gomez, Ian Boyd, Penny Smale, Michael Kotkamp, Zoë Jane Buxton","doi":"10.1007/s10874-025-09478-1","DOIUrl":null,"url":null,"abstract":"<div><p>The Hunga Tonga-Hunga Ha’apai volcanic eruption in January 2022 injected an extraordinary amount of water vapour into the tropical stratosphere (estimated at 150 Tg) along with a modest injection of sulphur dioxide (estimated at 0.4 Tg). Using a suite of ground-based remote-sensing trace gas measurements located at Arrival Heights, Antarctica (78 S, 167E), along with co-located satellite measurements of water vapour and stratospheric aerosol optical depth, we observed the evolution of the 2023 ozone hole. Arrival Heights was located beneath the polar vortex for extended periods during the austral spring (late August to early December) 2023. Within this period, satellite measurements of lower stratospheric water vapour above Arrival Heights fall within climatology norms (2004–2023) while elevated (70% increase in September mean sAOD), but highly variable, levels of stratospheric aerosol optical depth were observed. Ground-based measurements (total and partial columns) of ozone, ClO, HCl, ClONO<sub>2</sub>, OClO, NO, NO<sub>2</sub> and HNO<sub>3</sub> throughout springtime show no measurable attributable impact of Hunga Tonga-Hunga Ha’apai water vapour on stratospheric chemical composition, and ozone depletion within the polar vortex. Prolonged denitrification and elevated levels of chlorine monoxide in the second half of September were caused by unseasonally low stratospheric temperatures. Contemporary TOMCAT 3-D chemical transport model simulations are in overall good agreement with observations. The model simulations indicate Hunga Tonga-Hunga Ha’apai water vapour caused an additional reduction in total column ozone of 5 -7 DU over Arrival Heights in spring and early summer within the polar vortex. Such small differences are not discernible using the current measurement dataset given atmospheric variability, measurement precision and observational gaps. The simulations indicate the largest additional reduction in total column ozone were in the polar vortex collar region, where increased water vapour loading caused additional ozone loss up to 13 DU over Arrival Heights.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"82 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of the Hunga Tonga-Hunga ha’apai volcanic eruption on the 2023 Antarctic Ozone hole, as observed from Arrival Heights, Antarctica\",\"authors\":\"Dan Smale, Martyn P. Chipperfield, Richard Querel, Gerald E. Nedoluha, Udo Frieß, John Robinson, Sylvia Nichol, Saffron Heddell, Wuhu Feng, R. Michael Gomez, Ian Boyd, Penny Smale, Michael Kotkamp, Zoë Jane Buxton\",\"doi\":\"10.1007/s10874-025-09478-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Hunga Tonga-Hunga Ha’apai volcanic eruption in January 2022 injected an extraordinary amount of water vapour into the tropical stratosphere (estimated at 150 Tg) along with a modest injection of sulphur dioxide (estimated at 0.4 Tg). Using a suite of ground-based remote-sensing trace gas measurements located at Arrival Heights, Antarctica (78 S, 167E), along with co-located satellite measurements of water vapour and stratospheric aerosol optical depth, we observed the evolution of the 2023 ozone hole. Arrival Heights was located beneath the polar vortex for extended periods during the austral spring (late August to early December) 2023. Within this period, satellite measurements of lower stratospheric water vapour above Arrival Heights fall within climatology norms (2004–2023) while elevated (70% increase in September mean sAOD), but highly variable, levels of stratospheric aerosol optical depth were observed. Ground-based measurements (total and partial columns) of ozone, ClO, HCl, ClONO<sub>2</sub>, OClO, NO, NO<sub>2</sub> and HNO<sub>3</sub> throughout springtime show no measurable attributable impact of Hunga Tonga-Hunga Ha’apai water vapour on stratospheric chemical composition, and ozone depletion within the polar vortex. Prolonged denitrification and elevated levels of chlorine monoxide in the second half of September were caused by unseasonally low stratospheric temperatures. Contemporary TOMCAT 3-D chemical transport model simulations are in overall good agreement with observations. The model simulations indicate Hunga Tonga-Hunga Ha’apai water vapour caused an additional reduction in total column ozone of 5 -7 DU over Arrival Heights in spring and early summer within the polar vortex. Such small differences are not discernible using the current measurement dataset given atmospheric variability, measurement precision and observational gaps. The simulations indicate the largest additional reduction in total column ozone were in the polar vortex collar region, where increased water vapour loading caused additional ozone loss up to 13 DU over Arrival Heights.</p></div>\",\"PeriodicalId\":611,\"journal\":{\"name\":\"Journal of Atmospheric Chemistry\",\"volume\":\"82 2\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric Chemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10874-025-09478-1\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Chemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10874-025-09478-1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
The impact of the Hunga Tonga-Hunga ha’apai volcanic eruption on the 2023 Antarctic Ozone hole, as observed from Arrival Heights, Antarctica
The Hunga Tonga-Hunga Ha’apai volcanic eruption in January 2022 injected an extraordinary amount of water vapour into the tropical stratosphere (estimated at 150 Tg) along with a modest injection of sulphur dioxide (estimated at 0.4 Tg). Using a suite of ground-based remote-sensing trace gas measurements located at Arrival Heights, Antarctica (78 S, 167E), along with co-located satellite measurements of water vapour and stratospheric aerosol optical depth, we observed the evolution of the 2023 ozone hole. Arrival Heights was located beneath the polar vortex for extended periods during the austral spring (late August to early December) 2023. Within this period, satellite measurements of lower stratospheric water vapour above Arrival Heights fall within climatology norms (2004–2023) while elevated (70% increase in September mean sAOD), but highly variable, levels of stratospheric aerosol optical depth were observed. Ground-based measurements (total and partial columns) of ozone, ClO, HCl, ClONO2, OClO, NO, NO2 and HNO3 throughout springtime show no measurable attributable impact of Hunga Tonga-Hunga Ha’apai water vapour on stratospheric chemical composition, and ozone depletion within the polar vortex. Prolonged denitrification and elevated levels of chlorine monoxide in the second half of September were caused by unseasonally low stratospheric temperatures. Contemporary TOMCAT 3-D chemical transport model simulations are in overall good agreement with observations. The model simulations indicate Hunga Tonga-Hunga Ha’apai water vapour caused an additional reduction in total column ozone of 5 -7 DU over Arrival Heights in spring and early summer within the polar vortex. Such small differences are not discernible using the current measurement dataset given atmospheric variability, measurement precision and observational gaps. The simulations indicate the largest additional reduction in total column ozone were in the polar vortex collar region, where increased water vapour loading caused additional ozone loss up to 13 DU over Arrival Heights.
期刊介绍:
The Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the Earth''s atmosphere, the emphasis being laid on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences, but the journal concentrates on the following topics:
Observational, interpretative and modelling studies of the composition of air and precipitation and the physiochemical processes in the Earth''s atmosphere, excluding air pollution problems of local importance only.
The role of the atmosphere in biogeochemical cycles; the chemical interaction of the oceans, land surface and biosphere with the atmosphere.
Laboratory studies of the mechanics in homogeneous and heterogeneous transformation processes in the atmosphere.
Descriptions of major advances in instrumentation developed for the measurement of atmospheric composition and chemical properties.