Marwa Zahid, M’barek Amjoud, Daoud Mezzane, Mimoun El Marssi, Hana Uršič, Ivana Goričan, Brigita Kmet, Zdravko Kutnjak, Mohamed Gouné
{"title":"通过对锡钛酸钡(bati0.89 s0.110)填料的定制功能化,提高了bati0.89 s0.110 3/PVDF-HFP复合材料的性能","authors":"Marwa Zahid, M’barek Amjoud, Daoud Mezzane, Mimoun El Marssi, Hana Uršič, Ivana Goričan, Brigita Kmet, Zdravko Kutnjak, Mohamed Gouné","doi":"10.1007/s10854-025-15623-z","DOIUrl":null,"url":null,"abstract":"<div><p>Nanocomposites are currently attracting significant attention in the energy sector, particularly for storage applications. However, controlling interfacial compatibility remains a challenge. This work introduces a novel interfacial functionalization strategy that enables the achievement of exceptional dielectric properties and addresses the persistent issue of poor filler–matrix interaction in nanocomposites. A poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) matrix was filled with lead-free BaTi<sub>0.89</sub>Sn<sub>0.11</sub>O<sub>3</sub> (BTS<sub>11</sub>) nanoparticles, which exhibit ultra-high piezoelectric performance near ambient temperature. These nanoparticles were functionalized with various modifying agents, including ethylenediamine (EDA), polyvinylpyrrolidone (PVP), polydopamine (PDA), and 3-aminopropyltriethoxysilane (APS). The study demonstrated that the functionalized HO-BTS<sub>11</sub>@modifier/PVDF-HFP nanocomposites exhibit distinct dielectric characteristics depending on the modifying agent. The HO-BTS<sub>11</sub>@EDA/PVDF-HFP nanocomposites, which included hydroxylated HO-BTS<sub>11</sub> nanoparticles modified with EDA, outperformed other modified systems with the maximum energy storage efficiency (~ 77%) and a dielectric permittivity of 70 at 1 kHz. EDA with small molecular size, low polarity, and ability to form hydrogen bonds enable improved interfacial adhesion with the hydrophobic PVDF-HFP matrix making the composite suitable for enhancing energy storage performance. This selective functionalization strategy not only provides new insights into interface engineering but also offers a promising pathway for the development of high-performance materials for energy storage and harvesting devices, embedded capacitors, flexible electronics, and next-generation dielectric systems.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"36 24","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the performance of BaTi0.89S0.11O3/PVDF-HFP composites through tailored functionalization of barium stannate titanate (BaTi0.89S0.11O3) fillers\",\"authors\":\"Marwa Zahid, M’barek Amjoud, Daoud Mezzane, Mimoun El Marssi, Hana Uršič, Ivana Goričan, Brigita Kmet, Zdravko Kutnjak, Mohamed Gouné\",\"doi\":\"10.1007/s10854-025-15623-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nanocomposites are currently attracting significant attention in the energy sector, particularly for storage applications. However, controlling interfacial compatibility remains a challenge. This work introduces a novel interfacial functionalization strategy that enables the achievement of exceptional dielectric properties and addresses the persistent issue of poor filler–matrix interaction in nanocomposites. A poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) matrix was filled with lead-free BaTi<sub>0.89</sub>Sn<sub>0.11</sub>O<sub>3</sub> (BTS<sub>11</sub>) nanoparticles, which exhibit ultra-high piezoelectric performance near ambient temperature. These nanoparticles were functionalized with various modifying agents, including ethylenediamine (EDA), polyvinylpyrrolidone (PVP), polydopamine (PDA), and 3-aminopropyltriethoxysilane (APS). The study demonstrated that the functionalized HO-BTS<sub>11</sub>@modifier/PVDF-HFP nanocomposites exhibit distinct dielectric characteristics depending on the modifying agent. The HO-BTS<sub>11</sub>@EDA/PVDF-HFP nanocomposites, which included hydroxylated HO-BTS<sub>11</sub> nanoparticles modified with EDA, outperformed other modified systems with the maximum energy storage efficiency (~ 77%) and a dielectric permittivity of 70 at 1 kHz. EDA with small molecular size, low polarity, and ability to form hydrogen bonds enable improved interfacial adhesion with the hydrophobic PVDF-HFP matrix making the composite suitable for enhancing energy storage performance. This selective functionalization strategy not only provides new insights into interface engineering but also offers a promising pathway for the development of high-performance materials for energy storage and harvesting devices, embedded capacitors, flexible electronics, and next-generation dielectric systems.</p></div>\",\"PeriodicalId\":646,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Electronics\",\"volume\":\"36 24\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10854-025-15623-z\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-025-15623-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Enhancing the performance of BaTi0.89S0.11O3/PVDF-HFP composites through tailored functionalization of barium stannate titanate (BaTi0.89S0.11O3) fillers
Nanocomposites are currently attracting significant attention in the energy sector, particularly for storage applications. However, controlling interfacial compatibility remains a challenge. This work introduces a novel interfacial functionalization strategy that enables the achievement of exceptional dielectric properties and addresses the persistent issue of poor filler–matrix interaction in nanocomposites. A poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) matrix was filled with lead-free BaTi0.89Sn0.11O3 (BTS11) nanoparticles, which exhibit ultra-high piezoelectric performance near ambient temperature. These nanoparticles were functionalized with various modifying agents, including ethylenediamine (EDA), polyvinylpyrrolidone (PVP), polydopamine (PDA), and 3-aminopropyltriethoxysilane (APS). The study demonstrated that the functionalized HO-BTS11@modifier/PVDF-HFP nanocomposites exhibit distinct dielectric characteristics depending on the modifying agent. The HO-BTS11@EDA/PVDF-HFP nanocomposites, which included hydroxylated HO-BTS11 nanoparticles modified with EDA, outperformed other modified systems with the maximum energy storage efficiency (~ 77%) and a dielectric permittivity of 70 at 1 kHz. EDA with small molecular size, low polarity, and ability to form hydrogen bonds enable improved interfacial adhesion with the hydrophobic PVDF-HFP matrix making the composite suitable for enhancing energy storage performance. This selective functionalization strategy not only provides new insights into interface engineering but also offers a promising pathway for the development of high-performance materials for energy storage and harvesting devices, embedded capacitors, flexible electronics, and next-generation dielectric systems.
期刊介绍:
The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.