基于第一性原理的橄榄石氢迁移研究:对地下储氢的启示

IF 5.5 0 ENERGY & FUELS
Yu Huang , Lei Liu , Le Hu , Hong Liu
{"title":"基于第一性原理的橄榄石氢迁移研究:对地下储氢的启示","authors":"Yu Huang ,&nbsp;Lei Liu ,&nbsp;Le Hu ,&nbsp;Hong Liu","doi":"10.1016/j.jgsce.2025.205766","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the diffusion behavior of hydrogen in subsurface olivine can elucidate the kinetic processes governing H<sub>2</sub> migration, enrichment, and depletion, thereby establishing a theoretical foundation for deciphering underground hydrogen storage (UHS) mechanisms in geological formations and advancing the exploration, development, and utilization of subsurface H<sub>2</sub> resources. This study investigates H<sub>2</sub> diffusion in olivine using climbing image nudged elastic band (CI-NEB) method based on density functional theory (DFT). Our results reveal pronounced anisotropy in H<sub>2</sub> diffusion activation energies for both fayalite (Fe<sub>2</sub>SiO<sub>4</sub>) and forsterite (Mg<sub>2</sub>SiO<sub>4</sub>) under ambient pressure, with the [010] direction exhibiting the highest barriers, and fayalite demonstrates higher activation energies than forsterite. Expanding the pressure range to encompass the entire upper mantle, our calculations for pressure-dependent H<sub>2</sub> diffusion in forsterite show excellent agreement with prior ab initio molecular dynamics (AIMD) studies, validating the reliability of our methodology. To assess hydrogen storage capacity, we calculated H<sub>2</sub> diffusion distances in olivine over Earth's geological timescale. The results demonstrate meter-scale confinement of H<sub>2</sub> migration, confirming olivine's exceptional hydrogen retention capability. Notably, fayalite exhibits far shorter diffusion distances than forsterite, indicating superior storage capacity in Fe-rich olivine. For H<sub>2</sub> extraction, thermal extraction simulations for 100 μm–2000 μm crystals under three heating rates reveal temperature thresholds: under moderate heating (10 °C/Ma), initial H<sub>2</sub> release requires heating to 135 °C (fayalite) and 112 °C (forsterite) for 100 μm crystals, while complete extraction necessitates 190 °C and 162 °C, respectively. These findings establish olivine, particularly fayalite, as a natural hydrogen reservoir and provide critical parameters for evaluating hydrogen storage and recovery in geologic systems.</div></div>","PeriodicalId":100568,"journal":{"name":"Gas Science and Engineering","volume":"144 ","pages":"Article 205766"},"PeriodicalIF":5.5000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen migration in olivine based on first principles study: Implications for underground hydrogen storage\",\"authors\":\"Yu Huang ,&nbsp;Lei Liu ,&nbsp;Le Hu ,&nbsp;Hong Liu\",\"doi\":\"10.1016/j.jgsce.2025.205766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Understanding the diffusion behavior of hydrogen in subsurface olivine can elucidate the kinetic processes governing H<sub>2</sub> migration, enrichment, and depletion, thereby establishing a theoretical foundation for deciphering underground hydrogen storage (UHS) mechanisms in geological formations and advancing the exploration, development, and utilization of subsurface H<sub>2</sub> resources. This study investigates H<sub>2</sub> diffusion in olivine using climbing image nudged elastic band (CI-NEB) method based on density functional theory (DFT). Our results reveal pronounced anisotropy in H<sub>2</sub> diffusion activation energies for both fayalite (Fe<sub>2</sub>SiO<sub>4</sub>) and forsterite (Mg<sub>2</sub>SiO<sub>4</sub>) under ambient pressure, with the [010] direction exhibiting the highest barriers, and fayalite demonstrates higher activation energies than forsterite. Expanding the pressure range to encompass the entire upper mantle, our calculations for pressure-dependent H<sub>2</sub> diffusion in forsterite show excellent agreement with prior ab initio molecular dynamics (AIMD) studies, validating the reliability of our methodology. To assess hydrogen storage capacity, we calculated H<sub>2</sub> diffusion distances in olivine over Earth's geological timescale. The results demonstrate meter-scale confinement of H<sub>2</sub> migration, confirming olivine's exceptional hydrogen retention capability. Notably, fayalite exhibits far shorter diffusion distances than forsterite, indicating superior storage capacity in Fe-rich olivine. For H<sub>2</sub> extraction, thermal extraction simulations for 100 μm–2000 μm crystals under three heating rates reveal temperature thresholds: under moderate heating (10 °C/Ma), initial H<sub>2</sub> release requires heating to 135 °C (fayalite) and 112 °C (forsterite) for 100 μm crystals, while complete extraction necessitates 190 °C and 162 °C, respectively. These findings establish olivine, particularly fayalite, as a natural hydrogen reservoir and provide critical parameters for evaluating hydrogen storage and recovery in geologic systems.</div></div>\",\"PeriodicalId\":100568,\"journal\":{\"name\":\"Gas Science and Engineering\",\"volume\":\"144 \",\"pages\":\"Article 205766\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gas Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949908925002304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gas Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949908925002304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

了解氢在地下橄榄石中的扩散行为,可以阐明H2运移、富集和衰竭的动力学过程,从而为破解地质构造地下储氢(UHS)机制,推进地下氢气资源的勘探、开发和利用奠定理论基础。采用基于密度泛函理论(DFT)的爬升图像轻推弹性带(CI-NEB)方法研究了H2在橄榄石中的扩散。我们的研究结果表明,在环境压力下,铁矾石(Fe2SiO4)和forsterite (Mg2SiO4)的H2扩散活化能具有明显的各向异性,[010]方向表现出最高的势垒,铁矾石的活化能高于forsterite。将压力范围扩大到覆盖整个上地幔,我们对forsterite中压力相关的H2扩散的计算结果与先前的从头算分子动力学(AIMD)研究结果非常吻合,验证了我们方法的可靠性。为了评估储氢能力,我们计算了地球地质时间尺度上橄榄石中氢气的扩散距离。结果表明,在米尺度上限制了H2的迁移,证实了橄榄石特殊的留氢能力。值得注意的是,铁橄榄石的扩散距离远短于橄榄石,表明富铁橄榄石具有更强的储存能力。对于氢气提取,对100 μm - 2000 μm晶体在3种加热速率下的热提取模拟揭示了温度阈值:在中等加热(10°C/Ma)条件下,100 μm晶体的氢气初始释放需要加热到135℃(铁矾石)和112℃(橄榄石),而完全提取则需要分别加热到190℃和162℃。这些发现确立了橄榄石(尤其是橄榄石)作为天然储氢层的地位,并为评价地质系统中的储氢和采氢提供了关键参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hydrogen migration in olivine based on first principles study: Implications for underground hydrogen storage

Hydrogen migration in olivine based on first principles study: Implications for underground hydrogen storage
Understanding the diffusion behavior of hydrogen in subsurface olivine can elucidate the kinetic processes governing H2 migration, enrichment, and depletion, thereby establishing a theoretical foundation for deciphering underground hydrogen storage (UHS) mechanisms in geological formations and advancing the exploration, development, and utilization of subsurface H2 resources. This study investigates H2 diffusion in olivine using climbing image nudged elastic band (CI-NEB) method based on density functional theory (DFT). Our results reveal pronounced anisotropy in H2 diffusion activation energies for both fayalite (Fe2SiO4) and forsterite (Mg2SiO4) under ambient pressure, with the [010] direction exhibiting the highest barriers, and fayalite demonstrates higher activation energies than forsterite. Expanding the pressure range to encompass the entire upper mantle, our calculations for pressure-dependent H2 diffusion in forsterite show excellent agreement with prior ab initio molecular dynamics (AIMD) studies, validating the reliability of our methodology. To assess hydrogen storage capacity, we calculated H2 diffusion distances in olivine over Earth's geological timescale. The results demonstrate meter-scale confinement of H2 migration, confirming olivine's exceptional hydrogen retention capability. Notably, fayalite exhibits far shorter diffusion distances than forsterite, indicating superior storage capacity in Fe-rich olivine. For H2 extraction, thermal extraction simulations for 100 μm–2000 μm crystals under three heating rates reveal temperature thresholds: under moderate heating (10 °C/Ma), initial H2 release requires heating to 135 °C (fayalite) and 112 °C (forsterite) for 100 μm crystals, while complete extraction necessitates 190 °C and 162 °C, respectively. These findings establish olivine, particularly fayalite, as a natural hydrogen reservoir and provide critical parameters for evaluating hydrogen storage and recovery in geologic systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信