局部有限拓扑超空间上的度量性和某些广义度量性

IF 0.5 4区 数学 Q3 MATHEMATICS
Zhangyong Cai , Chuan Liu
{"title":"局部有限拓扑超空间上的度量性和某些广义度量性","authors":"Zhangyong Cai ,&nbsp;Chuan Liu","doi":"10.1016/j.topol.2025.109551","DOIUrl":null,"url":null,"abstract":"<div><div>For a topological space <em>X</em>, let <span><math><mi>C</mi><mi>L</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> be the set of all nonempty closed of <em>X</em>, and denote the set <span><math><mi>C</mi><mi>L</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> with the locally finite topology by <span><math><mo>(</mo><mi>C</mi><mi>L</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>,</mo><mtext>LF</mtext><mo>)</mo></math></span>.</div><div>In the first part of this paper, generalized metric spaces properties such as semi-stratifiability and Lašnev space property etc on hyperspaces with the locally finite topology are investigated and some metrization theorems are established.</div><div>(1) If <em>X</em> is a normal <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-space, then <span><math><mo>(</mo><mi>C</mi><mi>L</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>,</mo><mtext>LF</mtext><mo>)</mo></math></span> is semi-stratifiable if and only if <span><math><mo>(</mo><mi>C</mi><mi>L</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>,</mo><mtext>LF</mtext><mo>)</mo></math></span> is metrizable.</div><div>(2) If <em>X</em> is a metrizable space, then <span><math><mo>(</mo><mi>C</mi><mi>L</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>,</mo><mtext>LF</mtext><mo>)</mo></math></span> is of countable tightness if and only if <span><math><mo>(</mo><mi>C</mi><mi>L</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>,</mo><mtext>LF</mtext><mo>)</mo></math></span> is metrizable.</div><div>(3) <span><math><mo>(</mo><mi>C</mi><mi>L</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>,</mo><mtext>LF</mtext><mo>)</mo></math></span> is a Lašnev space if and only if it is metrizable.</div><div>(4) <span><math><mo>(</mo><mi>M</mi><mi>A</mi><mo>+</mo><mo>¬</mo><mi>C</mi><mi>H</mi><mo>)</mo></math></span> <span><math><mo>(</mo><mi>C</mi><mi>L</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>,</mo><mtext>LF</mtext><mo>)</mo></math></span> is a <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-space if and only if it is metrizable.</div><div>In the second part, the first step is made towards the investigation of hyperspaces with the locally finite topology with an <span><math><msup><mrow><mi>ω</mi></mrow><mrow><mi>ω</mi></mrow></msup></math></span>-base. The following results are obtained.</div><div>(5) If <span><math><mo>(</mo><mi>C</mi><mi>L</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>,</mo><mtext>LF</mtext><mo>)</mo></math></span> is a Fréchet-Urysohn space with an <span><math><msup><mrow><mi>ω</mi></mrow><mrow><mi>ω</mi></mrow></msup></math></span>-base, then <span><math><mo>(</mo><mi>C</mi><mi>L</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>,</mo><mtext>LF</mtext><mo>)</mo></math></span> is first-countable.</div><div>(6) Let <em>X</em> be metrizable. If <span><math><mo>(</mo><mi>C</mi><mi>L</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>,</mo><mtext>LF</mtext><mo>)</mo></math></span> has an <span><math><msup><mrow><mi>ω</mi></mrow><mrow><mi>ω</mi></mrow></msup></math></span>-base, then the subspace consisting of all non-isolated points of the space <em>X</em> is separable and <em>X</em> has an <span><math><msup><mrow><mi>ω</mi></mrow><mrow><mi>ω</mi></mrow></msup></math></span>-base at each closed subset of <em>X</em>.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"375 ","pages":"Article 109551"},"PeriodicalIF":0.5000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metrizability and certain generalized metrizability on hyperspaces with the locally finite topology\",\"authors\":\"Zhangyong Cai ,&nbsp;Chuan Liu\",\"doi\":\"10.1016/j.topol.2025.109551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a topological space <em>X</em>, let <span><math><mi>C</mi><mi>L</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> be the set of all nonempty closed of <em>X</em>, and denote the set <span><math><mi>C</mi><mi>L</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> with the locally finite topology by <span><math><mo>(</mo><mi>C</mi><mi>L</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>,</mo><mtext>LF</mtext><mo>)</mo></math></span>.</div><div>In the first part of this paper, generalized metric spaces properties such as semi-stratifiability and Lašnev space property etc on hyperspaces with the locally finite topology are investigated and some metrization theorems are established.</div><div>(1) If <em>X</em> is a normal <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-space, then <span><math><mo>(</mo><mi>C</mi><mi>L</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>,</mo><mtext>LF</mtext><mo>)</mo></math></span> is semi-stratifiable if and only if <span><math><mo>(</mo><mi>C</mi><mi>L</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>,</mo><mtext>LF</mtext><mo>)</mo></math></span> is metrizable.</div><div>(2) If <em>X</em> is a metrizable space, then <span><math><mo>(</mo><mi>C</mi><mi>L</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>,</mo><mtext>LF</mtext><mo>)</mo></math></span> is of countable tightness if and only if <span><math><mo>(</mo><mi>C</mi><mi>L</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>,</mo><mtext>LF</mtext><mo>)</mo></math></span> is metrizable.</div><div>(3) <span><math><mo>(</mo><mi>C</mi><mi>L</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>,</mo><mtext>LF</mtext><mo>)</mo></math></span> is a Lašnev space if and only if it is metrizable.</div><div>(4) <span><math><mo>(</mo><mi>M</mi><mi>A</mi><mo>+</mo><mo>¬</mo><mi>C</mi><mi>H</mi><mo>)</mo></math></span> <span><math><mo>(</mo><mi>C</mi><mi>L</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>,</mo><mtext>LF</mtext><mo>)</mo></math></span> is a <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-space if and only if it is metrizable.</div><div>In the second part, the first step is made towards the investigation of hyperspaces with the locally finite topology with an <span><math><msup><mrow><mi>ω</mi></mrow><mrow><mi>ω</mi></mrow></msup></math></span>-base. The following results are obtained.</div><div>(5) If <span><math><mo>(</mo><mi>C</mi><mi>L</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>,</mo><mtext>LF</mtext><mo>)</mo></math></span> is a Fréchet-Urysohn space with an <span><math><msup><mrow><mi>ω</mi></mrow><mrow><mi>ω</mi></mrow></msup></math></span>-base, then <span><math><mo>(</mo><mi>C</mi><mi>L</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>,</mo><mtext>LF</mtext><mo>)</mo></math></span> is first-countable.</div><div>(6) Let <em>X</em> be metrizable. If <span><math><mo>(</mo><mi>C</mi><mi>L</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>,</mo><mtext>LF</mtext><mo>)</mo></math></span> has an <span><math><msup><mrow><mi>ω</mi></mrow><mrow><mi>ω</mi></mrow></msup></math></span>-base, then the subspace consisting of all non-isolated points of the space <em>X</em> is separable and <em>X</em> has an <span><math><msup><mrow><mi>ω</mi></mrow><mrow><mi>ω</mi></mrow></msup></math></span>-base at each closed subset of <em>X</em>.</div></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":\"375 \",\"pages\":\"Article 109551\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864125003499\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864125003499","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于拓扑空间X,设CL(X)是X的所有非空闭的集合,用(CL(X),LF)表示具有局部有限拓扑的集合CL(X)。本文第一部分研究了具有局部有限拓扑的超空间上的广义度量空间性质,如半分层性和Lašnev空间性质等,并建立了一些度量化定理。(1)如果X是正规d0空间,则(CL(X),LF)是半分层的当且仅当(CL(X),LF)是可度量的。(2)若X是可度量空间,则当且仅当(CL(X),LF)是可度量的,则(CL(X),LF)是可数紧度。(3) (CL(X),LF)是一个Lašnev空间当且仅当它是可度量的。(4) (MA+ - CH) (CL(X),LF)是一个d0空间当且仅当它是可度量的。在第二部分中,第一步研究了具有ω-基的局部有限拓扑的超空间。得到如下结果:(5)如果(CL(X),LF)是一个以ωω为基底的fr宇航空间,则(CL(X),LF)是第一可数的。(6)设X是可度量的。如果(CL(X),LF)有一个ω-基,则由空间X的所有非孤立点组成的子空间是可分离的,并且X在X的每个闭子集上都有一个ω-基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metrizability and certain generalized metrizability on hyperspaces with the locally finite topology
For a topological space X, let CL(X) be the set of all nonempty closed of X, and denote the set CL(X) with the locally finite topology by (CL(X),LF).
In the first part of this paper, generalized metric spaces properties such as semi-stratifiability and Lašnev space property etc on hyperspaces with the locally finite topology are investigated and some metrization theorems are established.
(1) If X is a normal D0-space, then (CL(X),LF) is semi-stratifiable if and only if (CL(X),LF) is metrizable.
(2) If X is a metrizable space, then (CL(X),LF) is of countable tightness if and only if (CL(X),LF) is metrizable.
(3) (CL(X),LF) is a Lašnev space if and only if it is metrizable.
(4) (MA+¬CH) (CL(X),LF) is a D0-space if and only if it is metrizable.
In the second part, the first step is made towards the investigation of hyperspaces with the locally finite topology with an ωω-base. The following results are obtained.
(5) If (CL(X),LF) is a Fréchet-Urysohn space with an ωω-base, then (CL(X),LF) is first-countable.
(6) Let X be metrizable. If (CL(X),LF) has an ωω-base, then the subspace consisting of all non-isolated points of the space X is separable and X has an ωω-base at each closed subset of X.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
33.30%
发文量
251
审稿时长
6 months
期刊介绍: Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology. At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信