{"title":"整合微电网的多种能源:提高多能源系统的性能和可持续性","authors":"Xiaolin Zhang, Zhi Liu","doi":"10.1016/j.suscom.2025.101181","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a novel hybrid optimization framework for Multi-Energy Systems that jointly addresses cost efficiency, uncertainty, and demand-side flexibility. The proposed model uniquely integrates electric and thermal Load Response Plans within a unified structure and incorporates a Negative Risk Limit to explicitly control downside financial exposure under volatile conditions. A key innovation lies in the combination of scenario-based stochastic modeling and robust optimization to manage uncertainties in renewable generation, market prices, and consumer demand. The Flower Pollination Algorithm, a nature-inspired metaheuristic, is employed to efficiently solve the resulting high-dimensional problem. A residential-scale case study, involving photovoltaic panels, wind turbines, combined heat and power, boilers, electric vehicles, thermal storage, and heat pumps, demonstrates the framework’s applicability. Four simulation scenarios assess the individual and combined effects of Load Response Plans and risk constraints. Results indicate that energy purchases from upstream networks are reduced with coordinated load shifting, lowering peak hour procurement by 15–30 % compared to baseline operation. Electric vehicles exhibit active charge/discharge behavior in up to 75 % of daily time slots under joint Load Response Plan and Negative Risk Limit conditions, enhancing flexibility.</div></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"48 ","pages":"Article 101181"},"PeriodicalIF":5.7000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrate multiple energy sources of the microgrid: Enhancing performance and sustainability in multi-energy systems\",\"authors\":\"Xiaolin Zhang, Zhi Liu\",\"doi\":\"10.1016/j.suscom.2025.101181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces a novel hybrid optimization framework for Multi-Energy Systems that jointly addresses cost efficiency, uncertainty, and demand-side flexibility. The proposed model uniquely integrates electric and thermal Load Response Plans within a unified structure and incorporates a Negative Risk Limit to explicitly control downside financial exposure under volatile conditions. A key innovation lies in the combination of scenario-based stochastic modeling and robust optimization to manage uncertainties in renewable generation, market prices, and consumer demand. The Flower Pollination Algorithm, a nature-inspired metaheuristic, is employed to efficiently solve the resulting high-dimensional problem. A residential-scale case study, involving photovoltaic panels, wind turbines, combined heat and power, boilers, electric vehicles, thermal storage, and heat pumps, demonstrates the framework’s applicability. Four simulation scenarios assess the individual and combined effects of Load Response Plans and risk constraints. Results indicate that energy purchases from upstream networks are reduced with coordinated load shifting, lowering peak hour procurement by 15–30 % compared to baseline operation. Electric vehicles exhibit active charge/discharge behavior in up to 75 % of daily time slots under joint Load Response Plan and Negative Risk Limit conditions, enhancing flexibility.</div></div>\",\"PeriodicalId\":48686,\"journal\":{\"name\":\"Sustainable Computing-Informatics & Systems\",\"volume\":\"48 \",\"pages\":\"Article 101181\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Computing-Informatics & Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210537925001027\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537925001027","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Integrate multiple energy sources of the microgrid: Enhancing performance and sustainability in multi-energy systems
This paper introduces a novel hybrid optimization framework for Multi-Energy Systems that jointly addresses cost efficiency, uncertainty, and demand-side flexibility. The proposed model uniquely integrates electric and thermal Load Response Plans within a unified structure and incorporates a Negative Risk Limit to explicitly control downside financial exposure under volatile conditions. A key innovation lies in the combination of scenario-based stochastic modeling and robust optimization to manage uncertainties in renewable generation, market prices, and consumer demand. The Flower Pollination Algorithm, a nature-inspired metaheuristic, is employed to efficiently solve the resulting high-dimensional problem. A residential-scale case study, involving photovoltaic panels, wind turbines, combined heat and power, boilers, electric vehicles, thermal storage, and heat pumps, demonstrates the framework’s applicability. Four simulation scenarios assess the individual and combined effects of Load Response Plans and risk constraints. Results indicate that energy purchases from upstream networks are reduced with coordinated load shifting, lowering peak hour procurement by 15–30 % compared to baseline operation. Electric vehicles exhibit active charge/discharge behavior in up to 75 % of daily time slots under joint Load Response Plan and Negative Risk Limit conditions, enhancing flexibility.
期刊介绍:
Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.