Nicole A. Continelli , Luis F. Nagua , Pablo M. Olmos , Concepción A. Monje
{"title":"基于模型和数据驱动的柔性机器人颈部控制方法","authors":"Nicole A. Continelli , Luis F. Nagua , Pablo M. Olmos , Concepción A. Monje","doi":"10.1016/j.robot.2025.105155","DOIUrl":null,"url":null,"abstract":"<div><div>This paper delves into the potential of integrating model-based and data-driven techniques for controlling the performance of a soft robotic neck. Artificial intelligence (AI) methods, such as machine learning and deep learning, have shown their applicability in modelling and controlling robotic systems with complex nonlinear behaviours. However, model-based approaches have also proven to be effective analytical alternatives, even if they rely on simplified approximations of the robot model. The control system proposed in this work combines the closed loop analytical model of the soft robotic neck with a Multi-Layer Perceptron (MLP) network trained to minimise the neck pose error. The MLP undergoes training with three different data treatments, and the results are compared to determine the most effective one. The experimental results obtained demonstrate the robustness of the proposed technique and its potential as an alternative to classical solutions, whether purely based on analytical models or data-driven models.</div></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"194 ","pages":"Article 105155"},"PeriodicalIF":5.2000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined model-based and data-driven approach for the control of a soft robotic neck\",\"authors\":\"Nicole A. Continelli , Luis F. Nagua , Pablo M. Olmos , Concepción A. Monje\",\"doi\":\"10.1016/j.robot.2025.105155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper delves into the potential of integrating model-based and data-driven techniques for controlling the performance of a soft robotic neck. Artificial intelligence (AI) methods, such as machine learning and deep learning, have shown their applicability in modelling and controlling robotic systems with complex nonlinear behaviours. However, model-based approaches have also proven to be effective analytical alternatives, even if they rely on simplified approximations of the robot model. The control system proposed in this work combines the closed loop analytical model of the soft robotic neck with a Multi-Layer Perceptron (MLP) network trained to minimise the neck pose error. The MLP undergoes training with three different data treatments, and the results are compared to determine the most effective one. The experimental results obtained demonstrate the robustness of the proposed technique and its potential as an alternative to classical solutions, whether purely based on analytical models or data-driven models.</div></div>\",\"PeriodicalId\":49592,\"journal\":{\"name\":\"Robotics and Autonomous Systems\",\"volume\":\"194 \",\"pages\":\"Article 105155\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics and Autonomous Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921889025002520\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921889025002520","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Combined model-based and data-driven approach for the control of a soft robotic neck
This paper delves into the potential of integrating model-based and data-driven techniques for controlling the performance of a soft robotic neck. Artificial intelligence (AI) methods, such as machine learning and deep learning, have shown their applicability in modelling and controlling robotic systems with complex nonlinear behaviours. However, model-based approaches have also proven to be effective analytical alternatives, even if they rely on simplified approximations of the robot model. The control system proposed in this work combines the closed loop analytical model of the soft robotic neck with a Multi-Layer Perceptron (MLP) network trained to minimise the neck pose error. The MLP undergoes training with three different data treatments, and the results are compared to determine the most effective one. The experimental results obtained demonstrate the robustness of the proposed technique and its potential as an alternative to classical solutions, whether purely based on analytical models or data-driven models.
期刊介绍:
Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems.
Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.