视网膜静脉闭塞的多模态数据驱动方法:整合机器学习和生物信息学的叙述综述

IF 3.4
Chunlan Liang, Lian Liu, Jingxiang Zhong
{"title":"视网膜静脉闭塞的多模态数据驱动方法:整合机器学习和生物信息学的叙述综述","authors":"Chunlan Liang,&nbsp;Lian Liu,&nbsp;Jingxiang Zhong","doi":"10.1016/j.aopr.2025.07.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Retinal vein occlusion (RVO) is a leading cause of visual impairment on a global scale. Its pathological mechanisms involve a complex interplay of vascular obstruction, ischemia, and secondary inflammatory responses. Recent interdisciplinary advances, underpinned by the integration of multimodal data, have established a new paradigm for unraveling the pathophysiological mechanisms of RVO, enabling early diagnosis and personalized treatment strategies.</div></div><div><h3>Main text</h3><div>This review critically synthesizes recent progress at the intersection of machine learning, bioinformatics, and clinical medicine, focusing on developing predictive models and deep analysis, exploring molecular mechanisms, and identifying markers associated with RVO. By bridging technological innovation with clinical needs, this review underscores the potential of data-driven strategies to advance RVO research and optimize patient care.</div></div><div><h3>Conclusions</h3><div>Machine learning-bioinformatics integration has revolutionised RVO research through predictive modelling and mechanistic insights, particularly via deep learning-enhanced retinal imaging and multi-omics networks. Despite progress, clinical translation requires resolving data standardisation inconsistencies and model generalizability limitations. Establishing multicentre validation frameworks and interpretable AI tools, coupled with patient-focused data platforms through cross-disciplinary collaboration, could enable precision interventions to optimally preserve vision.</div></div>","PeriodicalId":72103,"journal":{"name":"Advances in ophthalmology practice and research","volume":"5 4","pages":"Pages 235-244"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal data-driven approaches in retinal vein occlusion: A narrative review integrating machine learning and bioinformatics\",\"authors\":\"Chunlan Liang,&nbsp;Lian Liu,&nbsp;Jingxiang Zhong\",\"doi\":\"10.1016/j.aopr.2025.07.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Retinal vein occlusion (RVO) is a leading cause of visual impairment on a global scale. Its pathological mechanisms involve a complex interplay of vascular obstruction, ischemia, and secondary inflammatory responses. Recent interdisciplinary advances, underpinned by the integration of multimodal data, have established a new paradigm for unraveling the pathophysiological mechanisms of RVO, enabling early diagnosis and personalized treatment strategies.</div></div><div><h3>Main text</h3><div>This review critically synthesizes recent progress at the intersection of machine learning, bioinformatics, and clinical medicine, focusing on developing predictive models and deep analysis, exploring molecular mechanisms, and identifying markers associated with RVO. By bridging technological innovation with clinical needs, this review underscores the potential of data-driven strategies to advance RVO research and optimize patient care.</div></div><div><h3>Conclusions</h3><div>Machine learning-bioinformatics integration has revolutionised RVO research through predictive modelling and mechanistic insights, particularly via deep learning-enhanced retinal imaging and multi-omics networks. Despite progress, clinical translation requires resolving data standardisation inconsistencies and model generalizability limitations. Establishing multicentre validation frameworks and interpretable AI tools, coupled with patient-focused data platforms through cross-disciplinary collaboration, could enable precision interventions to optimally preserve vision.</div></div>\",\"PeriodicalId\":72103,\"journal\":{\"name\":\"Advances in ophthalmology practice and research\",\"volume\":\"5 4\",\"pages\":\"Pages 235-244\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in ophthalmology practice and research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667376225000332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in ophthalmology practice and research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667376225000332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景视网膜静脉阻塞(RVO)是全球范围内视力损害的主要原因。其病理机制涉及血管阻塞、缺血和继发性炎症反应的复杂相互作用。最近跨学科的进展,在多模式数据整合的基础上,为揭示RVO的病理生理机制建立了一个新的范式,使早期诊断和个性化治疗策略成为可能。这篇综述批判性地综合了机器学习、生物信息学和临床医学交叉领域的最新进展,重点是建立预测模型和深入分析,探索分子机制,以及识别与RVO相关的标志物。通过将技术创新与临床需求相结合,本综述强调了数据驱动策略在推进RVO研究和优化患者护理方面的潜力。机器学习与生物信息学的结合通过预测建模和机制洞察,特别是通过深度学习增强的视网膜成像和多组学网络,彻底改变了RVO研究。尽管取得了进展,但临床翻译需要解决数据标准化不一致和模型通用性限制。通过跨学科合作,建立多中心验证框架和可解释的人工智能工具,再加上以患者为中心的数据平台,可以实现精确干预,以最佳方式保护视力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multimodal data-driven approaches in retinal vein occlusion: A narrative review integrating machine learning and bioinformatics

Multimodal data-driven approaches in retinal vein occlusion: A narrative review integrating machine learning and bioinformatics

Background

Retinal vein occlusion (RVO) is a leading cause of visual impairment on a global scale. Its pathological mechanisms involve a complex interplay of vascular obstruction, ischemia, and secondary inflammatory responses. Recent interdisciplinary advances, underpinned by the integration of multimodal data, have established a new paradigm for unraveling the pathophysiological mechanisms of RVO, enabling early diagnosis and personalized treatment strategies.

Main text

This review critically synthesizes recent progress at the intersection of machine learning, bioinformatics, and clinical medicine, focusing on developing predictive models and deep analysis, exploring molecular mechanisms, and identifying markers associated with RVO. By bridging technological innovation with clinical needs, this review underscores the potential of data-driven strategies to advance RVO research and optimize patient care.

Conclusions

Machine learning-bioinformatics integration has revolutionised RVO research through predictive modelling and mechanistic insights, particularly via deep learning-enhanced retinal imaging and multi-omics networks. Despite progress, clinical translation requires resolving data standardisation inconsistencies and model generalizability limitations. Establishing multicentre validation frameworks and interpretable AI tools, coupled with patient-focused data platforms through cross-disciplinary collaboration, could enable precision interventions to optimally preserve vision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信