Xinggui Ye , Jianping Li , Peng Wang , Ponnuthurai Nagaratnam Suganthan
{"title":"差分进化算法中自适应策略的综合研究","authors":"Xinggui Ye , Jianping Li , Peng Wang , Ponnuthurai Nagaratnam Suganthan","doi":"10.1016/j.swevo.2025.102081","DOIUrl":null,"url":null,"abstract":"<div><div>Classical differential evolution (DE) encounters premature convergence when dealing with diverse optimization problems. This challenge has encouraged extensive research efforts aimed at improving and enhancing the original methodologies. Among the various improvement techniques, adaptive strategies have been universally employed. However, there is a lack of systematic research on the adaptation mechanisms. This work comprehensively investigates the adaptive strategies adopted in DE algorithms. Typical adaptation strategies employed in DE algorithms are refined and summarized, highlighting their characteristics. A new taxonomy of adaptation strategies is proposed, categorizing them based on their primary properties, which include adaptations of control parameters, mutation strategies, population size, search space, learning schemes, and composite adaptations. The advantages and disadvantages of these adaptation strategies are summarized, elucidating their unique characteristics. Additionally, a general framework with an adaptive updating engine is proposed, which can serve as a reference for developing new DE algorithms or improving existing ones. The paper also highlights the challenges and open issues of adaptive strategies, suggesting several promising research directions.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"98 ","pages":"Article 102081"},"PeriodicalIF":8.5000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive survey of adaptive strategies in differential evolutionary algorithms\",\"authors\":\"Xinggui Ye , Jianping Li , Peng Wang , Ponnuthurai Nagaratnam Suganthan\",\"doi\":\"10.1016/j.swevo.2025.102081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Classical differential evolution (DE) encounters premature convergence when dealing with diverse optimization problems. This challenge has encouraged extensive research efforts aimed at improving and enhancing the original methodologies. Among the various improvement techniques, adaptive strategies have been universally employed. However, there is a lack of systematic research on the adaptation mechanisms. This work comprehensively investigates the adaptive strategies adopted in DE algorithms. Typical adaptation strategies employed in DE algorithms are refined and summarized, highlighting their characteristics. A new taxonomy of adaptation strategies is proposed, categorizing them based on their primary properties, which include adaptations of control parameters, mutation strategies, population size, search space, learning schemes, and composite adaptations. The advantages and disadvantages of these adaptation strategies are summarized, elucidating their unique characteristics. Additionally, a general framework with an adaptive updating engine is proposed, which can serve as a reference for developing new DE algorithms or improving existing ones. The paper also highlights the challenges and open issues of adaptive strategies, suggesting several promising research directions.</div></div>\",\"PeriodicalId\":48682,\"journal\":{\"name\":\"Swarm and Evolutionary Computation\",\"volume\":\"98 \",\"pages\":\"Article 102081\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swarm and Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210650225002391\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650225002391","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A comprehensive survey of adaptive strategies in differential evolutionary algorithms
Classical differential evolution (DE) encounters premature convergence when dealing with diverse optimization problems. This challenge has encouraged extensive research efforts aimed at improving and enhancing the original methodologies. Among the various improvement techniques, adaptive strategies have been universally employed. However, there is a lack of systematic research on the adaptation mechanisms. This work comprehensively investigates the adaptive strategies adopted in DE algorithms. Typical adaptation strategies employed in DE algorithms are refined and summarized, highlighting their characteristics. A new taxonomy of adaptation strategies is proposed, categorizing them based on their primary properties, which include adaptations of control parameters, mutation strategies, population size, search space, learning schemes, and composite adaptations. The advantages and disadvantages of these adaptation strategies are summarized, elucidating their unique characteristics. Additionally, a general framework with an adaptive updating engine is proposed, which can serve as a reference for developing new DE algorithms or improving existing ones. The paper also highlights the challenges and open issues of adaptive strategies, suggesting several promising research directions.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.