Hao Wang , Joe Jongpyo Lim , Haiwei Gu , Zhengui Xia , Julia Yue Cui
{"title":"镉诱导的肠道失调先于小鼠海马依赖性学习和记忆缺陷的发生","authors":"Hao Wang , Joe Jongpyo Lim , Haiwei Gu , Zhengui Xia , Julia Yue Cui","doi":"10.1016/j.tox.2025.154265","DOIUrl":null,"url":null,"abstract":"<div><div>Cadmium (Cd) is a heavy metal recognized as a neurotoxicant, but the detailed mechanisms contributing to its neurotoxicity remain to be fully elucidated. The gut-brain axis—a bidirectional communication pathway between the gut microbiome and the central nervous system—has been implicated in various neurological disorders. Since Cd targets the gut microbiome, it is important to investigate whether this axis contributes to Cd-induced neurotoxicity. In this study, adult male mice were exposed to environmentally relevant levels of Cd (3 mg/L) via drinking water for nine weeks. Cognitive function was assessed throughout the exposure period, and fecal samples were collected biweekly to track changes in the gut microbiome. We found that Cd exposure caused gut dysbiosis before the onset of cognitive deficits, with specific bacterial species correlating with impaired cognition. RNA sequencing revealed alterations in the expression of genes involved in cognition and neuroinflammation in the hippocampus. Additionally, Cd exposure reduced the expression of genes related to intestinal barrier integrity, increased levels of inflammatory cytokines, and altered the levels of neuroactive microbial metabolites. These findings suggest a critical role for the gut-brain axis in mediating Cd neurotoxicity and highlight the gut microbiome as a potential target for therapeutic strategies to prevent or mitigate Cd-induced cognitive decline.</div></div>","PeriodicalId":23159,"journal":{"name":"Toxicology","volume":"518 ","pages":"Article 154265"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cadmium-induced gut dysbiosis precedes the onset of hippocampus-dependent learning and memory deficits in mice\",\"authors\":\"Hao Wang , Joe Jongpyo Lim , Haiwei Gu , Zhengui Xia , Julia Yue Cui\",\"doi\":\"10.1016/j.tox.2025.154265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cadmium (Cd) is a heavy metal recognized as a neurotoxicant, but the detailed mechanisms contributing to its neurotoxicity remain to be fully elucidated. The gut-brain axis—a bidirectional communication pathway between the gut microbiome and the central nervous system—has been implicated in various neurological disorders. Since Cd targets the gut microbiome, it is important to investigate whether this axis contributes to Cd-induced neurotoxicity. In this study, adult male mice were exposed to environmentally relevant levels of Cd (3 mg/L) via drinking water for nine weeks. Cognitive function was assessed throughout the exposure period, and fecal samples were collected biweekly to track changes in the gut microbiome. We found that Cd exposure caused gut dysbiosis before the onset of cognitive deficits, with specific bacterial species correlating with impaired cognition. RNA sequencing revealed alterations in the expression of genes involved in cognition and neuroinflammation in the hippocampus. Additionally, Cd exposure reduced the expression of genes related to intestinal barrier integrity, increased levels of inflammatory cytokines, and altered the levels of neuroactive microbial metabolites. These findings suggest a critical role for the gut-brain axis in mediating Cd neurotoxicity and highlight the gut microbiome as a potential target for therapeutic strategies to prevent or mitigate Cd-induced cognitive decline.</div></div>\",\"PeriodicalId\":23159,\"journal\":{\"name\":\"Toxicology\",\"volume\":\"518 \",\"pages\":\"Article 154265\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0300483X25002240\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300483X25002240","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Cadmium-induced gut dysbiosis precedes the onset of hippocampus-dependent learning and memory deficits in mice
Cadmium (Cd) is a heavy metal recognized as a neurotoxicant, but the detailed mechanisms contributing to its neurotoxicity remain to be fully elucidated. The gut-brain axis—a bidirectional communication pathway between the gut microbiome and the central nervous system—has been implicated in various neurological disorders. Since Cd targets the gut microbiome, it is important to investigate whether this axis contributes to Cd-induced neurotoxicity. In this study, adult male mice were exposed to environmentally relevant levels of Cd (3 mg/L) via drinking water for nine weeks. Cognitive function was assessed throughout the exposure period, and fecal samples were collected biweekly to track changes in the gut microbiome. We found that Cd exposure caused gut dysbiosis before the onset of cognitive deficits, with specific bacterial species correlating with impaired cognition. RNA sequencing revealed alterations in the expression of genes involved in cognition and neuroinflammation in the hippocampus. Additionally, Cd exposure reduced the expression of genes related to intestinal barrier integrity, increased levels of inflammatory cytokines, and altered the levels of neuroactive microbial metabolites. These findings suggest a critical role for the gut-brain axis in mediating Cd neurotoxicity and highlight the gut microbiome as a potential target for therapeutic strategies to prevent or mitigate Cd-induced cognitive decline.
期刊介绍:
Toxicology is an international, peer-reviewed journal that publishes only the highest quality original scientific research and critical reviews describing hypothesis-based investigations into mechanisms of toxicity associated with exposures to xenobiotic chemicals, particularly as it relates to human health. In this respect "mechanisms" is defined on both the macro (e.g. physiological, biological, kinetic, species, sex, etc.) and molecular (genomic, transcriptomic, metabolic, etc.) scale. Emphasis is placed on findings that identify novel hazards and that can be extrapolated to exposures and mechanisms that are relevant to estimating human risk. Toxicology also publishes brief communications, personal commentaries and opinion articles, as well as concise expert reviews on contemporary topics. All research and review articles published in Toxicology are subject to rigorous peer review. Authors are asked to contact the Editor-in-Chief prior to submitting review articles or commentaries for consideration for publication in Toxicology.