{"title":"植物表观遗传机制中的乙烯信号整合","authors":"Aida Maric , Advait Agashe , Johanna Söntgerath , Sjon Hartman","doi":"10.1016/j.pbi.2025.102780","DOIUrl":null,"url":null,"abstract":"<div><div>Ethylene is an essential phytohormone that controls a plethora of plant developmental and stress responses. Accordingly, ethylene signal generation and progression must be under tight spatiotemporal control. This review highlights the latest milestones in understanding how epigenetic mechanisms govern ethylene biosynthesis and signaling, and how ethylene-mediated recruitment of epigenetic modifiers in turn controls gene expression and biological processes. We discuss a central mechanism of how ethylene-controlled histone acetylation is essential for ethylene signal progression. In addition, we outline how a wide range of epigenetic mechanisms control ethylene-mediated developmental and stress responses, with a focus on fruit ripening. Finally, we propose future research directions and open questions of ethylene signal integration through epigenetic mechanisms in plants.</div></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"87 ","pages":"Article 102780"},"PeriodicalIF":7.5000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ethylene signal integration through epigenetic mechanisms in plants\",\"authors\":\"Aida Maric , Advait Agashe , Johanna Söntgerath , Sjon Hartman\",\"doi\":\"10.1016/j.pbi.2025.102780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ethylene is an essential phytohormone that controls a plethora of plant developmental and stress responses. Accordingly, ethylene signal generation and progression must be under tight spatiotemporal control. This review highlights the latest milestones in understanding how epigenetic mechanisms govern ethylene biosynthesis and signaling, and how ethylene-mediated recruitment of epigenetic modifiers in turn controls gene expression and biological processes. We discuss a central mechanism of how ethylene-controlled histone acetylation is essential for ethylene signal progression. In addition, we outline how a wide range of epigenetic mechanisms control ethylene-mediated developmental and stress responses, with a focus on fruit ripening. Finally, we propose future research directions and open questions of ethylene signal integration through epigenetic mechanisms in plants.</div></div>\",\"PeriodicalId\":11003,\"journal\":{\"name\":\"Current opinion in plant biology\",\"volume\":\"87 \",\"pages\":\"Article 102780\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in plant biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369526625000949\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in plant biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369526625000949","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Ethylene signal integration through epigenetic mechanisms in plants
Ethylene is an essential phytohormone that controls a plethora of plant developmental and stress responses. Accordingly, ethylene signal generation and progression must be under tight spatiotemporal control. This review highlights the latest milestones in understanding how epigenetic mechanisms govern ethylene biosynthesis and signaling, and how ethylene-mediated recruitment of epigenetic modifiers in turn controls gene expression and biological processes. We discuss a central mechanism of how ethylene-controlled histone acetylation is essential for ethylene signal progression. In addition, we outline how a wide range of epigenetic mechanisms control ethylene-mediated developmental and stress responses, with a focus on fruit ripening. Finally, we propose future research directions and open questions of ethylene signal integration through epigenetic mechanisms in plants.
期刊介绍:
Current Opinion in Plant Biology builds on Elsevier's reputation for excellence in scientific publishing and long-standing commitment to communicating high quality reproducible research. It is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy - of editorial excellence, high-impact, and global reach - to ensure they are a widely read resource that is integral to scientists' workflow.