限制在不变子空间中的算子的相似度

IF 0.9 3区 数学 Q2 MATHEMATICS, APPLIED
Kui Ji , Shanshan Ji , Dinesh Kumar Keshari , Jing Xu
{"title":"限制在不变子空间中的算子的相似度","authors":"Kui Ji ,&nbsp;Shanshan Ji ,&nbsp;Dinesh Kumar Keshari ,&nbsp;Jing Xu","doi":"10.1016/j.bulsci.2025.103712","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>z</mi></mrow></msub></math></span> be the multiplication operator on the Bergman space and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>I</mi></mrow></msub></math></span> denote the restriction of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>z</mi></mrow></msub></math></span> to an invariant subspace <em>I</em>. A question raised by K. Zhu in <span><span>[44]</span></span> is when two restriction operators <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>I</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>J</mi></mrow></msub></math></span> are similar. Influenced by this open question, this note considers a more general case. Specifically, the multiplication operator on the Bergman space is replaced by the adjoint of Cowen-Douglas operators, and a direct sum of the multiplication operator acting on certain analytic functional Hilbert spaces. Furthermore, we give some sufficient conditions for these questions involving complex geometric objects of Hermitian holomorphic vector bundles.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"205 ","pages":"Article 103712"},"PeriodicalIF":0.9000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the similarity of operators restricted to an invariant subspace\",\"authors\":\"Kui Ji ,&nbsp;Shanshan Ji ,&nbsp;Dinesh Kumar Keshari ,&nbsp;Jing Xu\",\"doi\":\"10.1016/j.bulsci.2025.103712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>z</mi></mrow></msub></math></span> be the multiplication operator on the Bergman space and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>I</mi></mrow></msub></math></span> denote the restriction of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>z</mi></mrow></msub></math></span> to an invariant subspace <em>I</em>. A question raised by K. Zhu in <span><span>[44]</span></span> is when two restriction operators <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>I</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>J</mi></mrow></msub></math></span> are similar. Influenced by this open question, this note considers a more general case. Specifically, the multiplication operator on the Bergman space is replaced by the adjoint of Cowen-Douglas operators, and a direct sum of the multiplication operator acting on certain analytic functional Hilbert spaces. Furthermore, we give some sufficient conditions for these questions involving complex geometric objects of Hermitian holomorphic vector bundles.</div></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"205 \",\"pages\":\"Article 103712\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449725001381\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725001381","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

设Mz为Bergman空间上的乘法算子,MI表示Mz对不变子空间i的限制。K. Zhu在[44]中提出的一个问题是,当两个限制算子MI和MJ相似时。受这个开放性问题的影响,本说明考虑一个更一般的情况。具体地说,Bergman空间上的乘法算子被Cowen-Douglas算子的伴随算子和作用于某些解析泛函Hilbert空间上的乘法算子的直接和所取代。在此基础上,给出了涉及厄密全纯向量束的复杂几何对象的若干充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the similarity of operators restricted to an invariant subspace
Let Mz be the multiplication operator on the Bergman space and MI denote the restriction of Mz to an invariant subspace I. A question raised by K. Zhu in [44] is when two restriction operators MI and MJ are similar. Influenced by this open question, this note considers a more general case. Specifically, the multiplication operator on the Bergman space is replaced by the adjoint of Cowen-Douglas operators, and a direct sum of the multiplication operator acting on certain analytic functional Hilbert spaces. Furthermore, we give some sufficient conditions for these questions involving complex geometric objects of Hermitian holomorphic vector bundles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信