Kui Ji , Shanshan Ji , Dinesh Kumar Keshari , Jing Xu
{"title":"限制在不变子空间中的算子的相似度","authors":"Kui Ji , Shanshan Ji , Dinesh Kumar Keshari , Jing Xu","doi":"10.1016/j.bulsci.2025.103712","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>z</mi></mrow></msub></math></span> be the multiplication operator on the Bergman space and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>I</mi></mrow></msub></math></span> denote the restriction of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>z</mi></mrow></msub></math></span> to an invariant subspace <em>I</em>. A question raised by K. Zhu in <span><span>[44]</span></span> is when two restriction operators <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>I</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>J</mi></mrow></msub></math></span> are similar. Influenced by this open question, this note considers a more general case. Specifically, the multiplication operator on the Bergman space is replaced by the adjoint of Cowen-Douglas operators, and a direct sum of the multiplication operator acting on certain analytic functional Hilbert spaces. Furthermore, we give some sufficient conditions for these questions involving complex geometric objects of Hermitian holomorphic vector bundles.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"205 ","pages":"Article 103712"},"PeriodicalIF":0.9000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the similarity of operators restricted to an invariant subspace\",\"authors\":\"Kui Ji , Shanshan Ji , Dinesh Kumar Keshari , Jing Xu\",\"doi\":\"10.1016/j.bulsci.2025.103712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>z</mi></mrow></msub></math></span> be the multiplication operator on the Bergman space and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>I</mi></mrow></msub></math></span> denote the restriction of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>z</mi></mrow></msub></math></span> to an invariant subspace <em>I</em>. A question raised by K. Zhu in <span><span>[44]</span></span> is when two restriction operators <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>I</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>J</mi></mrow></msub></math></span> are similar. Influenced by this open question, this note considers a more general case. Specifically, the multiplication operator on the Bergman space is replaced by the adjoint of Cowen-Douglas operators, and a direct sum of the multiplication operator acting on certain analytic functional Hilbert spaces. Furthermore, we give some sufficient conditions for these questions involving complex geometric objects of Hermitian holomorphic vector bundles.</div></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"205 \",\"pages\":\"Article 103712\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449725001381\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725001381","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
On the similarity of operators restricted to an invariant subspace
Let be the multiplication operator on the Bergman space and denote the restriction of to an invariant subspace I. A question raised by K. Zhu in [44] is when two restriction operators and are similar. Influenced by this open question, this note considers a more general case. Specifically, the multiplication operator on the Bergman space is replaced by the adjoint of Cowen-Douglas operators, and a direct sum of the multiplication operator acting on certain analytic functional Hilbert spaces. Furthermore, we give some sufficient conditions for these questions involving complex geometric objects of Hermitian holomorphic vector bundles.