{"title":"加权triiebel - lizorkin空间的链式法则","authors":"Sean Douglas","doi":"10.1016/j.jfa.2025.111165","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we establish a fractional chain rule in the setting of weighted Triebel-Lizorkin spaces. Notably, this provides a fractional chain rule for weighted Lebesgue spaces, <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>w</mi><mo>)</mo></math></span>, for <span><math><mi>p</mi><mo>≤</mo><mn>1</mn></math></span>. Additionally, an explicit relationship between the smoothness index, integrability index, and the choice of weights is determined.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 12","pages":"Article 111165"},"PeriodicalIF":1.6000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chain rule for weighted Triebel-Lizorkin spaces\",\"authors\":\"Sean Douglas\",\"doi\":\"10.1016/j.jfa.2025.111165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we establish a fractional chain rule in the setting of weighted Triebel-Lizorkin spaces. Notably, this provides a fractional chain rule for weighted Lebesgue spaces, <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>w</mi><mo>)</mo></math></span>, for <span><math><mi>p</mi><mo>≤</mo><mn>1</mn></math></span>. Additionally, an explicit relationship between the smoothness index, integrability index, and the choice of weights is determined.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 12\",\"pages\":\"Article 111165\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625003477\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003477","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this paper we establish a fractional chain rule in the setting of weighted Triebel-Lizorkin spaces. Notably, this provides a fractional chain rule for weighted Lebesgue spaces, , for . Additionally, an explicit relationship between the smoothness index, integrability index, and the choice of weights is determined.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis