NiCo₂O _4纳米片的高温超级电容性能:煅烧和器件工作温度的影响

IF 5.7 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Muzahir Iqbal , Nilesh G Saykar , Santosh K. Mahapatra , Vijay Kumar , Anil Arya
{"title":"NiCo₂O _4纳米片的高温超级电容性能:煅烧和器件工作温度的影响","authors":"Muzahir Iqbal ,&nbsp;Nilesh G Saykar ,&nbsp;Santosh K. Mahapatra ,&nbsp;Vijay Kumar ,&nbsp;Anil Arya","doi":"10.1016/j.materresbull.2025.113724","DOIUrl":null,"url":null,"abstract":"<div><div>Reliable energy storage and on-demand energy delivery are crucial during times of scarcity. Aqueous electrolytes are widely used in energy storage devices, but their performance is influenced by ambient temperature, especially in regions with significant temperature fluctuations. This study reports synthesis of NiCo₂O₄ (NCO) nanosheets through a solvothermal method, followed by calcination at different temperatures (300 °C, 400 °C, and 500 °C). A symmetric supercapacitor cell is fabricated and tested with 3 M Potassium hydroxide (KOH) electrolyte within an elevated temperature range [40 °C-80 °C], using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and impedance spectroscopy (EIS). Structural analysis confirms the formation of NCO-nanosheets with specific surface area of 110 m²/g, and X-ray Photoelectron Spectroscopy (XPS) analysis verifies the oxidation states. The NCO 300 sample exhibits the highest specific capacitance of ∼531 F/g at 10 mV/s and ∼244 F/g at 2 A/g. Impedance analysis reveals low bulk/charge transfer resistance, along with reduced activation energy, as confirmed by Arrhenius plot. NCO300 achieves a peak energy density of 33.87 Wh/kg at a power density of 842.07 W/kg. Capacitance increases with temperature across all samples, demonstrating excellent thermal stability of device. Practical application is confirmed by successfully illuminating a red light-emitting diode (LED), highlighting the potential of NCO-based supercapacitors for real-world high temperature energy storage solutions.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"194 ","pages":"Article 113724"},"PeriodicalIF":5.7000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-temperature supercapacitive performance of NiCo₂O₄ nanosheets: Effect of calcination and device operating temperature\",\"authors\":\"Muzahir Iqbal ,&nbsp;Nilesh G Saykar ,&nbsp;Santosh K. Mahapatra ,&nbsp;Vijay Kumar ,&nbsp;Anil Arya\",\"doi\":\"10.1016/j.materresbull.2025.113724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Reliable energy storage and on-demand energy delivery are crucial during times of scarcity. Aqueous electrolytes are widely used in energy storage devices, but their performance is influenced by ambient temperature, especially in regions with significant temperature fluctuations. This study reports synthesis of NiCo₂O₄ (NCO) nanosheets through a solvothermal method, followed by calcination at different temperatures (300 °C, 400 °C, and 500 °C). A symmetric supercapacitor cell is fabricated and tested with 3 M Potassium hydroxide (KOH) electrolyte within an elevated temperature range [40 °C-80 °C], using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and impedance spectroscopy (EIS). Structural analysis confirms the formation of NCO-nanosheets with specific surface area of 110 m²/g, and X-ray Photoelectron Spectroscopy (XPS) analysis verifies the oxidation states. The NCO 300 sample exhibits the highest specific capacitance of ∼531 F/g at 10 mV/s and ∼244 F/g at 2 A/g. Impedance analysis reveals low bulk/charge transfer resistance, along with reduced activation energy, as confirmed by Arrhenius plot. NCO300 achieves a peak energy density of 33.87 Wh/kg at a power density of 842.07 W/kg. Capacitance increases with temperature across all samples, demonstrating excellent thermal stability of device. Practical application is confirmed by successfully illuminating a red light-emitting diode (LED), highlighting the potential of NCO-based supercapacitors for real-world high temperature energy storage solutions.</div></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"194 \",\"pages\":\"Article 113724\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025540825004313\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540825004313","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在能源短缺时期,可靠的能源储存和按需输送至关重要。水溶液电解质广泛应用于储能装置中,但其性能受到环境温度的影响,特别是在温度波动较大的地区。本研究采用溶剂热法合成了NiCo₂O₄(NCO)纳米片,并在不同温度(300℃、400℃和500℃)下进行了煅烧。采用循环伏安法(CV)、恒流充放电法(GCD)和阻抗谱法(EIS),制备了一种对称超级电容器电池,并在高温范围(40°C-80°C)下使用3 M氢氧化钾(KOH)电解质进行了测试。结构分析证实形成了比表面积为110 m²/g的nco纳米片,x射线光电子能谱(XPS)分析证实了氧化态。NCO 300样品在10 mV/s和2 A/g时的最高比电容分别为~ 531 F/g和~ 244 F/g。阻抗分析表明,体积/电荷转移电阻低,活化能降低,正如Arrhenius图所证实的那样。NCO300的峰值能量密度为33.87 Wh/kg,功率密度为842.07 W/kg。所有样品的电容随温度升高而增加,表明器件具有优异的热稳定性。通过成功点亮红色发光二极管(LED),证实了实际应用,突出了基于nco的超级电容器在现实世界高温储能解决方案中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-temperature supercapacitive performance of NiCo₂O₄ nanosheets: Effect of calcination and device operating temperature

High-temperature supercapacitive performance of NiCo₂O₄ nanosheets: Effect of calcination and device operating temperature
Reliable energy storage and on-demand energy delivery are crucial during times of scarcity. Aqueous electrolytes are widely used in energy storage devices, but their performance is influenced by ambient temperature, especially in regions with significant temperature fluctuations. This study reports synthesis of NiCo₂O₄ (NCO) nanosheets through a solvothermal method, followed by calcination at different temperatures (300 °C, 400 °C, and 500 °C). A symmetric supercapacitor cell is fabricated and tested with 3 M Potassium hydroxide (KOH) electrolyte within an elevated temperature range [40 °C-80 °C], using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and impedance spectroscopy (EIS). Structural analysis confirms the formation of NCO-nanosheets with specific surface area of 110 m²/g, and X-ray Photoelectron Spectroscopy (XPS) analysis verifies the oxidation states. The NCO 300 sample exhibits the highest specific capacitance of ∼531 F/g at 10 mV/s and ∼244 F/g at 2 A/g. Impedance analysis reveals low bulk/charge transfer resistance, along with reduced activation energy, as confirmed by Arrhenius plot. NCO300 achieves a peak energy density of 33.87 Wh/kg at a power density of 842.07 W/kg. Capacitance increases with temperature across all samples, demonstrating excellent thermal stability of device. Practical application is confirmed by successfully illuminating a red light-emitting diode (LED), highlighting the potential of NCO-based supercapacitors for real-world high temperature energy storage solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信