Xiaozhen Zhou , Pengchao Ma , Yihao Liu , Zhaojian Wang , Shida Chen , Zekun Cheng , Songlu Tseng , Hui Wu , Mengdi Zhang , Fengzhou Du , Nanze Yu , Xiao Long , Jiuzuo Huang , Xiumei Wang
{"title":"可喷雾水凝胶海绵用于糖尿病创面修复中的神经血管微环境重建和炎症调节","authors":"Xiaozhen Zhou , Pengchao Ma , Yihao Liu , Zhaojian Wang , Shida Chen , Zekun Cheng , Songlu Tseng , Hui Wu , Mengdi Zhang , Fengzhou Du , Nanze Yu , Xiao Long , Jiuzuo Huang , Xiumei Wang","doi":"10.1016/j.bioactmat.2025.08.008","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetic wounds are characterized by chronic inflammation, vascular insufficiency, and peripheral neuropathy, which collectively disrupt the neurovascular microenvironment essential for coordinated tissue regeneration. However, strategies targeting neurovascular regeneration remain limited. Here, we developed a sprayable hydrogel sponge based on gelatin methacryloyl and methacrylamide-modified ε-poly-L-lysine (S-GPL), co-functionalized with VEGF-mimetic peptide (KLT) and BDNF-mimetic peptide (RGI). The sprayable format conforms to irregular wound geometries, while the pneumatic spraying technique generates high-pressure microbubbles that create a porous structure, thereby enhancing exudate absorption and sustained peptide release as a sponge dressing. Additionally, the incorporation of KLT and RGI facilitates the reconstruction of the neurovascular microenvironment. In vitro, KLT promoted endothelial cell maturation and cytokine secretion, whereas RGI enhanced Schwann cell activity. Notably, S-GPL<sup>KLT/RGI</sup> facilitated intercellular interactions between RSCs and HUVECs, highlighting the cellular mechanisms underlying neurovascular communication. In a full-thickness diabetic wound model in rats, the hydrogel accelerated wound closure, re-epithelialization, and matrix remodeling. These effects were accompanied by enhanced neovascularization and axonal regeneration, along with the formation of a spatially organized neurovascular niche, as evidenced by CD31<sup>+</sup> capillaries closely aligned with PGP9.5<sup>+</sup> nerve fibers. Building upon the intrinsic anti-inflammatory properties of S-GPL, transcriptomic and immunohistochemical analyses further revealed that S-GPL<sup>KLT/RGI</sup> treatment suppressed the IL-17 signaling pathway. However, the relationship between immunomodulation and neurovascular reconstruction warrants further investigation. Collectively, this study presents a sprayable antibacterial hydrogel that not only reconstructs the neurovascular microenvironment but also mitigates chronic inflammation, offering a clinically translatable strategy for diabetic wound management.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"54 ","pages":"Pages 352-370"},"PeriodicalIF":18.0000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sprayable hydrogel sponge for neurovascular microenvironment reconstruction and inflammation modulation in diabetic wound healing\",\"authors\":\"Xiaozhen Zhou , Pengchao Ma , Yihao Liu , Zhaojian Wang , Shida Chen , Zekun Cheng , Songlu Tseng , Hui Wu , Mengdi Zhang , Fengzhou Du , Nanze Yu , Xiao Long , Jiuzuo Huang , Xiumei Wang\",\"doi\":\"10.1016/j.bioactmat.2025.08.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Diabetic wounds are characterized by chronic inflammation, vascular insufficiency, and peripheral neuropathy, which collectively disrupt the neurovascular microenvironment essential for coordinated tissue regeneration. However, strategies targeting neurovascular regeneration remain limited. Here, we developed a sprayable hydrogel sponge based on gelatin methacryloyl and methacrylamide-modified ε-poly-L-lysine (S-GPL), co-functionalized with VEGF-mimetic peptide (KLT) and BDNF-mimetic peptide (RGI). The sprayable format conforms to irregular wound geometries, while the pneumatic spraying technique generates high-pressure microbubbles that create a porous structure, thereby enhancing exudate absorption and sustained peptide release as a sponge dressing. Additionally, the incorporation of KLT and RGI facilitates the reconstruction of the neurovascular microenvironment. In vitro, KLT promoted endothelial cell maturation and cytokine secretion, whereas RGI enhanced Schwann cell activity. Notably, S-GPL<sup>KLT/RGI</sup> facilitated intercellular interactions between RSCs and HUVECs, highlighting the cellular mechanisms underlying neurovascular communication. In a full-thickness diabetic wound model in rats, the hydrogel accelerated wound closure, re-epithelialization, and matrix remodeling. These effects were accompanied by enhanced neovascularization and axonal regeneration, along with the formation of a spatially organized neurovascular niche, as evidenced by CD31<sup>+</sup> capillaries closely aligned with PGP9.5<sup>+</sup> nerve fibers. Building upon the intrinsic anti-inflammatory properties of S-GPL, transcriptomic and immunohistochemical analyses further revealed that S-GPL<sup>KLT/RGI</sup> treatment suppressed the IL-17 signaling pathway. However, the relationship between immunomodulation and neurovascular reconstruction warrants further investigation. Collectively, this study presents a sprayable antibacterial hydrogel that not only reconstructs the neurovascular microenvironment but also mitigates chronic inflammation, offering a clinically translatable strategy for diabetic wound management.</div></div>\",\"PeriodicalId\":8762,\"journal\":{\"name\":\"Bioactive Materials\",\"volume\":\"54 \",\"pages\":\"Pages 352-370\"},\"PeriodicalIF\":18.0000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioactive Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452199X25003615\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X25003615","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Sprayable hydrogel sponge for neurovascular microenvironment reconstruction and inflammation modulation in diabetic wound healing
Diabetic wounds are characterized by chronic inflammation, vascular insufficiency, and peripheral neuropathy, which collectively disrupt the neurovascular microenvironment essential for coordinated tissue regeneration. However, strategies targeting neurovascular regeneration remain limited. Here, we developed a sprayable hydrogel sponge based on gelatin methacryloyl and methacrylamide-modified ε-poly-L-lysine (S-GPL), co-functionalized with VEGF-mimetic peptide (KLT) and BDNF-mimetic peptide (RGI). The sprayable format conforms to irregular wound geometries, while the pneumatic spraying technique generates high-pressure microbubbles that create a porous structure, thereby enhancing exudate absorption and sustained peptide release as a sponge dressing. Additionally, the incorporation of KLT and RGI facilitates the reconstruction of the neurovascular microenvironment. In vitro, KLT promoted endothelial cell maturation and cytokine secretion, whereas RGI enhanced Schwann cell activity. Notably, S-GPLKLT/RGI facilitated intercellular interactions between RSCs and HUVECs, highlighting the cellular mechanisms underlying neurovascular communication. In a full-thickness diabetic wound model in rats, the hydrogel accelerated wound closure, re-epithelialization, and matrix remodeling. These effects were accompanied by enhanced neovascularization and axonal regeneration, along with the formation of a spatially organized neurovascular niche, as evidenced by CD31+ capillaries closely aligned with PGP9.5+ nerve fibers. Building upon the intrinsic anti-inflammatory properties of S-GPL, transcriptomic and immunohistochemical analyses further revealed that S-GPLKLT/RGI treatment suppressed the IL-17 signaling pathway. However, the relationship between immunomodulation and neurovascular reconstruction warrants further investigation. Collectively, this study presents a sprayable antibacterial hydrogel that not only reconstructs the neurovascular microenvironment but also mitigates chronic inflammation, offering a clinically translatable strategy for diabetic wound management.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.